Paper | Title | Page |
---|---|---|
MOPGW046 | Proton Beam Steering for the Experimental Muon Source at CSNS | 193 |
|
||
Experimental Muon Source (EMuS) is a muon source to be built at China Spallation Neutron Source (CSNS). The EMuS baseline design adopts a stand-alone target sitting in capture superconducting solenoids, and the muon beam is extracted in the forward direction. In the same time the spent protons are also extracted from the target station and guided to an external. Because there is an angle of 15 degrees between the axis of solenoids and the proton direction, the protons will be deviated by the solenoid field. A pair of correction magnets in front of the solenoids is used to align the incoming proton beam to the target and also guide the spent protons to the beam dump. As the target station is design to work at different field level, this increases the complexity of the proton beam transport. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW046 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPTS065 | Alternative Design of CEPC LINAC | 1005 |
|
||
Circular Electron-Positron Collider (CEPC) is a 100 km ring e+ e− collider for a Higgs factory. The injector is composed of a Linac and a Booster. The baseline design of CEPC Linac is a normal conducting S-band linear accelerator with frequency in 2860 MHz, which can provide electron and positron beam at an energy up to 10 GeV and bunch charge up to 3 nC. To reduce the design difficulty of booster and booster magnet at low energy part, an alternative design of the Linac with C-band accelerating structure at high energy part is proposed and the energy is up to 20 GeV. The compre-hensive consideration of Linac design and damping ring design will be discussed. In this paper, the physics design of this scheme is presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS065 | |
About • | paper received ※ 16 May 2019 paper accepted ※ 19 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPTS067 | The Progress in Physics Design of HEPS LINAC | 1008 |
|
||
The High Energy Photon Source (HEPS) is a 6-GeV, ultralow-emittance light source to be built in China. The injector is composed of a 500-MeV Linac and a full energy booster. According to the study and com-missioning consideration of on-axis swap-out injec-tion system, a high bunch charge injector is desirable and a Linac that can provide 7nC per bunch electron beam to booster is needed. This paper present different bunching system schemes and the performance of different schemes are discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS067 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPTS073 | Bunching System Optimization Based on MOGA | 1018 |
SUSPFO082 | use link to see paper's listing under its alternate paper code | |
|
||
Multiobjective Genetic Algorithms (MOGA) is effective in dealing with optimization problems with multiple objectives. The bunching system of the High Energy Photon Source (HEPS) linac adopts a traditional bunching system for compressing electron beams with a pulse charge of 4 nC. The bunching system is optimized using MOGA. The optimization include minimizing the normalized emittance and maximizing transmission efficiency. The optimization results have reached the design target, and are presented in this paper. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS073 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUZPLS2 | Beam Dynamics Study in the HEPS Storage Ring | 1203 |
|
||
The High Energy Photon Source (HEPS) is the first high-energy diffraction-limited storage ring (DLSR) light source to be built in China, with a natural emittance of a few tens of pm rad and a circumference of 1360.4 m. After 10 years’ evolution, the accelerator physics design of the HEPS has been basically determined, with the ring consisting of 48 hybrid-7BAs with anti-bends and super-bends. This paper will discuss the accelerator physics studies of the HEPS storage ring, covering issues of lattice design, nonlinear optimization, collective effects, error correction, insertion devices, etc. | ||
![]() |
Slides TUZPLS2 [9.517 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUZPLS2 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW046 | Progress of Lattice Design and Physics Studies on the High Energy Photon Source | 1510 |
|
||
The High Energy Photon Source (HEPS) is an ul-tralow-emittance, kilometer-scale storage ring light source to be built in China. In this paper we will introduce the progress of the physics design and related studies of HEPS over the past year, covering issues in storage ring lattice design, injection and injector design, insertion device effects, error study and lattice calibration, collective effects, etc. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW046 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW048 | Simulation of Injection Efficiency for the High Energy Photon Source | 1514 |
|
||
Funding: Work supported by Natural Science Foundation of China (No.11605212). A ’high-energy accumulation’ scheme [1] was proposed to deliver the full charge bunches for the swap-out injec- tion of the High Energy Photon Source. In this scheme, the depleted storage ring bunches are recovered via merging with small charge bunches in the booster, before being refilled into the storage ring. In particular, the high charge bunches are transferred twice between the storage ring and the booster, and thus it is essential to maintain a near per- fect transmission efficiency in the whole process. In this paper, major error effects affecting the transmission efficiency are analyzed and their tolerances are summarized, injection simulations indicate a satisfactory transmission efficiency is achievable for the present baseline lattice. * Z. Duan, et al., "The swap-out injection scheme for the High Energy Photon Source", Proc. IPAC’18, THPMF052 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW048 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW052 | STUDY OF THE RAMPING PROCESS FOR HEPS BOOSTER | 1521 |
|
||
The High Energy Photon Source (HEPS) is a 6-GeV, ul-tralow-emittance storage ring light source to be built in Huairou District, Beijing, China. The beam energy ramps from 500 MeV to 6 GeV in 400 ms, during which the RF voltage increases accordingly to keep the momentum acceptance large enough. The booster is designed to operate at 1 Hz repetition frequency. In this paper the energy ramping curve, RF choice, beam parameters changing curves and eddy current effect in HEPS booster will be presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW052 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEYPLM1 | Status of Circular Electron-Positron Collider and Super Proton-Proton Collider | 2244 |
|
||
Circular electron-positron collider (CEPC) is a dedi-cated project proposed by China to research the Higgs boson. The collider ring provides e+ e− collision at two interaction points (IP). The luminosity for the Higgs mode at the beam energy of 120GeV is 3*1034 cm-2s-1 at each IP while the synchrotron radiation (SR) power per beam is 30MW. Furthermore, CEPC is compatible with W and Z experiments, for which the beam energies are 80 GeV and 45.5 GeV respectively. The luminosity at the Z mode is higher than 1.7*1035 cm-2s-1 per IP. Top-up operation is available during the data taking of high energy physics. Super Proton-Proton Collider (SPPC) is envisioned to be an extremely powerful machine, with centre mass energy of 75 TeV, a nominal luminosity of 1.0*1035 cm-2s-1 per IP, and an integrated luminosity of 30 ab-1 assuming 2 interaction points and ten years of running. The status of CEPC and SPPC will be introduced in detail in this paper. | ||
![]() |
Slides WEYPLM1 [11.814 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEYPLM1 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMP019 | Physical Design of HEPS Low Energy Transport Line | 2349 |
|
||
he High Energy Photon Source (HEPS), a kilometre-scale storage ring based light source, with emittance less than 60 pm.rad, will be constructed in Beijing, China. It con-sists of a 500 MeV linac, a 500 MeV low energy transport line, a full energy booster synchrotron, two 6- GeV transport lines, a 6 GeV ultra-low emittance storage ring, and the beam line experimental stations. The low energy transport line connecting the linac and the booster. Based on the construction layout restrictions, the beam enve-lopes of the linac and the booster should be matched, and the beam produced by the linac is high efficiently trans-mitted to the booster injection point. HEPS low energy transport line has three functional sections, the achromat injection matching section, the optics matching section and the output matching section. In order to correct the error effects on the beam, 8 BPM are set in the low energy transport line. There are also 6 horizontal correctors and 6vertical correctors for beam trajectory correction. This paper will show the detailed design of HEPS low energy transport line. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP019 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPRB045 | Suppression of Secondary Electron Yield Effect in the 650MHz/800kW Klystron for CEPC | 2906 |
|
||
The circular electron positron collider (CEPC) is in pre-research, it will need more than two hundred 650MHz/800kW klystrons. The secondary electron yield (SEY) effect suppression is very important for the klystron working stable. The simulation uses an incident primary electron source and considers all the phases and power levels of the input microwave. Two methods are simulated for the SEY suppression. The groove cutting on the nose of cavities is much simple while the TiN coating can suppress better. The effect after groove cutting on nose is also simulated and the corresponding compensations are adopted. For simplify the fabrication progress as well as some experience that can be referenced, the groove cutting method is adopted finally for the first klystron prototype, which is expected to be available in the summer of 2019. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB045 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPRB046 | Development of Flexible Waveguide for High Power High Vacuum Applications in S-band | 2909 |
|
||
A novel flexible waveguide is developed for S band 2856 MHz, which is a standard WR284 waveguide. The surface of the flexible waveguide is plated with Oxygen-free High Conductivity (OFHC) copper for the purpose of welding with the stainless steel flange in the vacuum furnace, for the flexible waveguide itself is made of brass. The prototype has got a certain amount of deformation which will be much more convenient for the connection between two hard waveguides. It also has a good measurement results of the lower power microwave test, and the 72 hours vacuum leakage test shows a satisfactory vacuum performance, no obvious surface collapse is observed. The high power test will be conducted after our high power test facility is available, which will tell us the maximal power level of the flexible waveguide prototype. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB046 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW040 | Decay Muon Beamline Design for EMuS | 3670 |
|
||
Funding: This work is supported by the Chinese Academy of Sciences. The beamline design philosophies and simulation re-sults of the decay muon on Experimental Muon Source (EMuS) are reported in this paper. The beamline is com-posed of solenoids to keep large acceptance, and has been optimized for 45, 150 and 450 MeV/c decay muon re-spectively according to the π spectra optimization results from target station. Decay muons from 45 to 150 MeV/c are designed for μSR applications, and 150 to 450 MeV/c are designed for muon imaging, which is unique on the high momentum perspective. Negative muons from 45 to 150 MeV/c are designed for muonic applications. The momentum range of decay muon is tuneable between 45 and 450 MeV/c. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW040 | |
About • | paper received ※ 01 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPTS040 | Preliminary Design of Mechanical Supports for the Booster of Heps | 4197 |
|
||
The Booster of High Energy Photon Source (HEPS) is a 454 meters ring with the repeat frequency of 1 Hz. The natural frequency of the magnets and their support as-sembly should be higher than 30 Hz. The alignment re-quirements on quadrupole and sextupole are better than 0.1 mm in x and y direction. This paper will discuss the preliminary design of the mechanical supports in Booster ring, as well as the discussion of finite element analyses results. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS040 | |
About • | paper received ※ 30 April 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPTS041 | Progress and TDR Plans of the Mechanical System of CEPC | 4200 |
|
||
The TDR of CEPC is aimed at the key science and technology problems and makes preparations for the real project. This paper will describe the progress of mechanical system including the regular supports and transport vehicle design, the mockup plan, the installation scenario of machine detector interface (MDI) and the movable collimator, as well as the TDR plans of mechanical system. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS041 | |
About • | paper received ※ 28 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |