Author: Mehrling, T.J.
Paper Title Page
WEZZPLS2 EuPRAXIA, a Step Toward a Plasma-Wakefield Based Accelerator With High Beam Quality 2291
 
  • P.A.P. Nghiem, A. Chancé
    CEA-IRFU, Gif-sur-Yvette, France
  • D. Alesini, E. Chiadroni, M. Croia, A. Del Dotto, M. Ferrario, A. Giribono, R. Pompili, S. Romeo, V. Shpakov, A. Stella, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • A. Aschikhin, R.W. Aßmann, U. Dorda, A. Ferran Pousa, V. Libov, B. Marchetti, A. Martinez de la Ossa, D. Marx, P. Niknejadi, L. Schaper, E.N. Svystun, P.A. Walker, M.K. Weikum, J. Zhu
    DESY, Hamburg, Germany
  • T. Audet, B. Cros, P. Lee, G. Maynard
    CNRS LPGP Univ Paris Sud, Orsay, France
  • A. Beck, F. Massimo, A. Specka
    LLR, Palaiseau, France
  • M. Chen, S.M. Weng
    Shanghai Jiao Tong University, Shanghai, People’s Republic of China
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • J.A. Clarke
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.-E. Couprie, A. Ghaith, D. Oumbarek Espinos
    SOLEIL, Gif-sur-Yvette, France
  • G. Dattoli, F. Nguyen
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • N. Delerue
    LAL, Orsay, France
  • R.A. Fonseca, L.O. Silva
    Instituto Superior Tecnico, Lisbon, Portugal
  • L.A. Gizzi, G. Toci, P. Tomassini
    INO-CNR, Pisa, Italy
  • A. Helm
    IST-UTL, Lisbon, Portugal
  • B. Hidding
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S.M. Hooker, R. Walczak
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • M.G. Ibison, M. Vujanovic, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • D.A. Jaroszynski, F.Y. Li, Z.M. Sheng, S.M. Wiggins, S. Yoffe
    USTRAT/SUPA, Glasgow, United Kingdom
  • K.O. Kruchinin, A.Y. Molodozhentsev
    ELI-BEAMS, Prague, Czech Republic
  • L. Labate
    CNR/IPP, Pisa, Italy
  • X. Li
    DESY Zeuthen, Zeuthen, Germany
  • F. Mathieu
    LULI, Palaiseau, France
  • Z. Mazzotta
    Ecole Polytechnique, Palaiseau, France
  • T.J. Mehrling
    LBNL, Berkeley, USA
  • A. Mosnier, C. Simon
    CEA, Gif-sur-Yvette, France
  • A. Mostacci
    Rome University La Sapienza, Roma, Italy
  • Z. Najmudin
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • R. Pattathil, D. Symes
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • A.R. Rossi
    INFN-Milano, Milano, Italy
  • T. Silva, J.M. Vieira
    IPFN, Lisbon, Portugal
  • M.J.V. Streeter
    JAI, London, United Kingdom
  • D. Terzani
    UniNa, Napoli, Italy
 
  Funding: European Union’s Horizon 2020 research and innovation programme under grant agreement No. 653782
The EuPRAXIA project aims at designing the world’s first accelerator based on plasma-wakefield advanced technique, which can deliver a 5 GeV electron beam with simultaneously high charge, low emittance and low energy spread to user’s communities. Such challenging objectives can only have a chance to be achieved when particular efforts are dedicated to identify the subsequent issues and to find the way to solve them. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European institutes to sort out the most appropriate ones. The specific issues of high charge, high beam quality and beam extraction then transfer to the user’s applications, have been tackled with many innovative approaches*. This article highlights the different advanced methods that have been employed by the EuPRAXIA collaboration and the preliminary results obtained. The needs in terms of laser and plasma parameters for such an accelerator are also summarized.
*- in 2017: Phys. Plasmas, 24,10,103120; Nat. Commun.8,15705; - in 2018: NIMA, 909,84-89; NIMA, 909,49-53; Phys. Rev.Acc. Beams, 21,111301; NIMA, 909,54-57; Phys. Rev.Acc. Beams, 21,052802; NIMA, 909,282-285
 
slides icon Slides WEZZPLS2 [5.157 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEZZPLS2  
About • paper received ※ 12 April 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW016 Overview and Prospects of Plasma Wakefield Acceleration Experiments at PITZ 3612
 
  • O. Lishilin, Y. Chen, J.D. Good, M. Groß, I.I. Isaev, C. Koschitzki, M. Krasilnikov, G. Loisch, D. Melkumyan, R. Niemczyk, A. Oppelt, H.J. Qian, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • R. Brinkmann, A. Martinez de la Ossa, J. Osterhoff
    DESY, Hamburg, Germany
  • F.J. Grüner
    Center for Free-Electron Laser Science, Universität Hamburg, Hamburg, Germany
  • T.J. Mehrling, C.B. Schroeder
    LBNL, Berkeley, California, USA
 
  The Photo Injector Test Facility at DESY in Zeuthen (PITZ) carries out studies of beam-driven plasma wakefield acceleration (PWFA). The facility possesses a flexible photocathode laser beam shaping system and a variety of diagnostics including a high-resolution dipole spectrometer and an rf deflector which enables the observation of the longitudinal phase space of electron beams after their passage through a plasma. Two plasma sources are available: a gas discharge plasma cell and a photoionized lithium vapor plasma cell. Studies at PITZ include investigations of the self-modulation instability of long electron beams and the high transformer ratio, i.e., the ratio between the maximum accelerating field behind the drive beam and the decelerating field within the beam. This overview includes the experimental results and plans for future experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW016  
About • paper received ※ 30 April 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW017 Self-Modulation Instability of Electron Beams in Plasma Channels of Variable Length 3616
 
  • O. Lishilin, Y. Chen, J.D. Good, M. Groß, I.I. Isaev, C. Koschitzki, M. Krasilnikov, G. Loisch, A. Oppelt, H.J. Qian, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • R. Brinkmann, A. Martinez de la Ossa, J. Osterhoff
    DESY, Hamburg, Germany
  • F.J. Grüner
    Center for Free-Electron Laser Science, Universität Hamburg, Hamburg, Germany
  • T.J. Mehrling, C.B. Schroeder
    LBNL, Berkeley, California, USA
 
  The self-modulation instability (SMI) of long (in respect to the plasma wavelength) charged particle beams passing through plasma enables the use of currently existing high energy charged particle beams as drivers for plasma wakefield accelerators. At the Photo Injector Test facility at DESY in Zeuthen (PITZ) the SMI of electron beams is studied *, **. An enhanced experimental setup includes a plasma channel of variable length which allows to investigate in details the development stages of the SMI by measuring the instability growth rate and phase velocity as a function of propagation distance in the plasma. In this contribution we present the experimental setup improvements, first measurement results and supporting beam dynamics simulations.
* M. Gross, et al., Phys. Rev. Lett., vol. 120, p. 144802, 2018.
** G. Loisch, et al., Plasma Physics and Controlled Fusion, vol. 61(4), p. 045012, 2019
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW017  
About • paper received ※ 11 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW019 FLASHforward Findings for the EuPRAXIA Design Study and the Next-Generation of Compact Accelerator Facilities 3619
 
  • P. Niknejadi, R.T.P. D’Arcy, J.M. Garland, J. Osterhoff, L. Schaper, B. Schmidt, G.E. Tauscher
    DESY, Hamburg, Germany
  • M. Ferrario, S. Romeo
    INFN/LNF, Frascati, Italy
  • C.A. Lindstrøm
    University of Oslo, Oslo, Norway
  • T.J. Mehrling
    LBNL, Berkeley, USA
 
  FLASHForward, the exploratory FLASH beamline for Future-ORiented Wakefield Accelerator Research and Development, is a European pilot test bed facility for accelerating electron beams to GeV-levels in a few centimeters of ionized gas. The main focus is on the advancement of plasma-based particle acceleration technology through investigation of injection schemes, novel concepts and diagnostics, as well as benchmarking theoretical studies and simulations. Since the plasma wakefield will be driven by the optimal high-current-density electron beams extracted from the FLASH L-band Superconducting RF accelerator, FLASHForward has been in a unique position for studying and providing insight for the design study of next-generation light source and high energy physics facilities such as EuPRAXIA*. Summary of these findings and their broader impact is discussed here.
*P. A. Walker, et. al., "Horizon 2020 EuPRAXIA design study," Journal of Physics Conference Series 874(1):012029, July 2017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW019  
About • paper received ※ 15 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)