Author: McIntyre, G.T.
Paper Title Page
MOPRB072 eRHIC in Electron-Ion Operation 738
 
  • W. Fischer, E.C. Aschenauer, E.N. Beebe, M. Blaskiewicz, K.A. Brown, D. Bruno, K.A. Drees, C.J. Gardner, H. Huang, T. Kanesue, C. Liu, M. Mapes, G.T. McIntyre, M.G. Minty, C. Montag, S.K. Nayak, M. Okamura, V. Ptitsyn, D. Raparia, J. Sandberg, K.S. Smith, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, A. Zaltsman, A. Zelenski
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
The design effort for the electron-ion collider eRHIC has concentrated on electron-proton collisions at the highest luminosities over the widest possible energy range. The present design also provides for electron-nucleon peak luminosities of up to 4.7·1033 cm-2s−1 with strong hadron cooling, and up to 1.7·1033 cm-2s−1 with stochastic cooling. Here we discuss the performance limitations and design choices for electron-ion collisions that are different from the electron-proton collisions. These include the ion bunch preparation in the injector chain, acceleration and intrabeam scattering in the hadron ring, path length adjustment and synchronization with the electron ring, stochastic cooling upgrades, machine protection upgrades, and operation with polarized electron beams colliding with either unpolarized ion beams or polarized He-3.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB072  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS080 Novel Technique Ion Assisted In-Situ Coating of Long, Small Diameter, Accelerator Beam Pipes with Compacted Thick Crystalline Copper Film 4301
 
  • A. Hershcovitch, M. Blaskiewicz, J.M. Brennan, W. Fischer, G.T. McIntyre, S. Verdú-Andrés
    BNL, Upton, Long Island, New York, USA
  • A.X. Custer, M.Y. Erickson, H.J. Poole
    PVI, Oxnard, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
Although great progress was made with in-situ copper coating, by magnetron sputtering, to address the high room temperature resistivity, literature indicates that conventionally deposited thick copper films do not retain the same RF conductivity at cryogenic temperatures, since straightforward deposition tends to result in films with columnar structure and other lattice defects, which cause significant conductivity degradation at cryogenic temperatures. We utilize energetic ions for ion assisted deposition (IAD) to reduce lattice imperfections, for coating. IAD that can in-situ coat long small diameter tubes with compacted crystalline structure thick copper films has been developed. Moreover, development of techniques and devices can resurrect IAD for other applications, which have been impractical and/or not viable economically. Comparison of conductivity at cryogenic temperatures between straight magnetron physical vapor deposition and IAD will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS080  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)