Author: McEwen, E.A.
Paper Title Page
WEPRB098 Cryogenic RF Performance of Double-Quarter Wave Cavities Equipped with HOM Filters 3043
 
  • S. Verdú-Andrés, I. Ben-Zvi, Q. Wu, B.P. Xiao
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • G. Burt, J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
  • R. Calaga, O. Capatina
    CERN, Meyrin, Switzerland
  • N.A. Huque, E.A. McEwen, H. Park, T. Powers
    JLab, Newport News, Virginia, USA
  • Z. Li, A. Ratti
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by US DOE through BSA LLC under contracts No. DE-AC02-98CH10886, No. DE-SC0012704, and the US LHC Accelerator Research Program (LARP) and by the EU HL-LHC Project.
Crab cavities are one of the several components included in the luminosity upgrade of the Large Hadron Collider (HL-LHC). The cavities have to provide a nominal deflecting kick of 3.4 MV per cavity while the cryogenic load per cavity stays below 5 W. Cold RF tests confirmed the required performances in bare cavities, with several cavities exceeding the required voltage by more than 50%. However, the first tests of a Double-Quarter Wave (DQW) cavity with one out of three HOM filters did not reach the required voltage. The present paper describes the studies and tests conducted on a DQW cavity with HOM filter to understand the limiting factor. The recipe to meet the performance specification and exceed the voltage requirement by more than 35% is discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB098  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)