Author: Mayet, F.
Paper Title Page
MOPTS014 The Experimental Area at the ARES LINAC 867
 
  • F. Burkart, R.W. Aßmann, U. Dorda, J. Hauser, S. Lederer, F. Lemery, B. Marchetti, F. Mayet, E. Panofski, P. Wiesener
    DESY, Hamburg, Germany
  • M. Trunk
    University of Hamburg, Hamburg, Germany
 
  The ARES (Accelerator Research Experiment at SINBAD) linac at the accelerator R&D facility SINBAD (Short innovative bunches and accelerators at DESY) will drive multiple independent experiments including the acceleration of ultrashort electron bunches. In addition the linac will host an experimental area, open for transnational access, to study advanced high gradient, laser driven, acceleration concepts, like the ones studied within the ACHIP (accelerator on a chip) project. The area will be operational mid-2019. This paper will report on the current status of the experimental area, including hardware parameters, beam optics, achievable beam parameters, design of the experimental chamber and commissioning plans. The modification plans for a micro-bunching experiment in the frame of the ACHIP experiment and future upgrade plans will be shown and discussed in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS014  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS026 Status Report of the SINBAD-ARES RF Photoinjector and LINAC Commissioning 906
 
  • E. Panofski, R.W. Aßmann, F. Burkart, U. Dorda, K. Flöttmann, M. Hüning, B. Marchetti, D. Marx, F. Mayet, P.A. Walker, S. Yamin
    DESY, Hamburg, Germany
 
  The accelerator R&D facility SINBAD (Short innovative bunches and accelerators at DESY) will drive multiple independent experiments including the acceleration of ultrashort electron bunches and the test of advanced high gradient acceleration concepts. The SINBAD-ARES (Accelerator Research Experiment at SINBAD) setup hosts a normal conducting RF photoinjector generating a low charge electron beam that is afterwards accelerated to 100 MeV by an S-band linac section. The linac as well as a magnetic chicane allow the production of ultrashort pulses with an excellent arrival-time stability. The high brightness beam has then the potential to serve as a test beam for next generation compact acceleration schemes. The setup of the SINBAD-ARES facility will proceed in stages. We report on the current status of the ARES RF gun and linac commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS026  
About • paper received ※ 22 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW014 Tolerance Studies and Limitations for Photonic Bandgap Fiber Accelerators 3605
 
  • L. Genovese, R.W. Aßmann, U. Dorda, M. Kellermeier, W. Kuropka, F. Lemery, F. Mayet
    DESY, Hamburg, Germany
  • W. Kuropka, F. Mayet
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Laser-driven hollow core photonic bandgap (PBG) fibers were proposed by Lin in 2001 as high-gradient accelerators. The central defect in the transversely periodic lattice supports an accelerating mode for synchronous acceleration in the ultra-relativistic regime. The optical frequencies in such dielectric laser accelerators motivate a sensitivity and tolerance study to overcome manufacturing imperfections. Finally we discuss the propagation characteristics of Lin-fibers and find that small-bandwidth (~ns) pulses would be needed for efficient acceleration over longer distances.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW014  
About • paper received ※ 16 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)