Paper | Title | Page |
---|---|---|
WEPTS019 | Accumulating Laser-Coolable Ions in a Linear Paul Trap for Ultrahigh-Density Beam Dynamics Experiment | 3134 |
|
||
An ion plasma confined in a linear Paul trap (LPT) exhibits the dynamic behavior physically equivalent to that of a charged-particle beam in an alternating-gradient transport channel. The Simulator of Particle Orbit Dynamics (S-POD) is a compact apparatus designed on the basis of this fact for diverse beam-physics experiments. We have so far employed Ar+ ions that can readily be produced from neutral Ar gas atoms through the electron bombardment process. A space-charge-induced tune shift of up to about 20% of the bare tune can be achieved in Ar+ plasmas [*]. We are now preparing for future S-POD experiment to explore even higher beam-density regions. For this purpose, a large number of Ca+ ions need to be stored in the LPT. Since S-POD is equipped with a powerful laser cooler for Ca+, the use of this ion species vastly expands the density range we can survey. The production of an intense bunch of Ca+ ions is, however, not so easy because of some technical reasons. By optimizing the operating condition of a multi-sectioned LPT, we succeeded in increasing the number of accumulated Ca+ ions to the level comparable to Ar+ ion plasmas. This paper reports on updated results of the experiment.
* K. Ito et al., Phys. Rev. Accel. Beams Vol. 20, 064201 (2017). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS019 | |
About • | paper received ※ 26 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |