Paper | Title | Page |
---|---|---|
MOPRB080 | Transient Beam Loading and Mitigation in JLEIC Collider Rings | 758 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177, with additional support from U.S. DOE Award Number DE-SC-0019287 The Jefferson Lab Electron-Ion Collider (JLEIC) is an asymmetric high luminosity ring-ring collider proposed as the next major R&D facility for the nuclear physics community. Both of JLEIC’s electron and ion collider rings have high beam current with gaps serving the pur-poses of beam abort, ion clearing, etc. Such a time-varying beam loading in the RF cavities would generate modulation in cavity RF phase/voltage, causing cyclic shift of collision point and potential luminosity loss. We studied a few approaches to mitigate the RF phase modu-lation and IP shift, such as correcting the RF phase/voltage modulation with traditional LLRF feed-back, one-turn feedback (OTFB), or RF feedforward (FF); optimizing the bunch fill pattern to limit the RF phase/voltage modulation to a small fraction of the bunch trains in the collider ring; or matching the RF phase modulation in the two rings. The preliminary re-sults are discussed in this paper. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB080 | |
About • | paper received ※ 23 May 2019 paper accepted ※ 24 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |