Author: Marin, E.     [Marín, E.]
Paper Title Page
MOPTS002 Linac Energy Jitter Measurements with SPARK BPMs at ALBA 833
 
  • R. Muñoz Horta, D. Lanaia, E. Marín, A. Olmos, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  At ALBA four Beam Position Monitors (BPMs) measure the beam position along the Linac to Booster Transfer Line. The BPM electronics (Libera Spark type) have been recently upgraded in order to be sensitive to single-pass beam detection. As a result, the position resolution measured in LTB BPMs has been increased by a factor 10 with respect to the former electronics. The increased resolution enables us to resolve the energy jitter of the Linac beam, providing an on-line measurement of the Linac energy during regular operation. In this paper a study of the Linac energy jitter is presented as well as its correlation with the jitter sources.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS002  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS095 Optimization of the Alba Linac Operation Modes 1086
 
  • E. Marín, D. Lanaia, R. Muñoz Horta, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  ALBA is a third generation synchrotron light source that consists on a linac, booster and storage ring. The linac is capable of operating in single (SBM) and multi-bunch injection mode (MBM). Since 2016 the Single Bunch Bucket Selection algorithm which runs in SBM, permits to inject on a selected bucket keeping the charge uniformity along the ring below 4\%. However when running in SBM a significantly lower transmission along the linac is observed, with respect to the one when running in MBM. Simulation efforts have been deployed in order to build up a reliable model of the ALBA linac which can reproduce the experimental measurements. In this paper we present the new simulation model that renders the experimental observations, and the new optimization procedure developed in simulations and tested in the real machine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS095  
About • paper received ※ 12 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB032 The CompactLight Design Study Project 1756
 
  • G. D’Auria, S. Di Mitri, R.A. Rochow
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Aicheler
    HIP, University of Helsinki, Finland
  • A.A. Aksoy
    Ankara University, Accelerator Technologies Institute, Golbasi, Turkey
  • D. Alesini, M. Bellaveglia, B. Buonomo, F. Cardelli, M. Croia, M. Diomede, M. Ferrario, A. Gallo, A. Giribono, L. Piersanti, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • R. Apsimon, A. Castilla
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • J.M. Arnesano, F. Bosco, L. Ficcadenti, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • A. Bernhard, J. Gethmann
    KIT, Karlsruhe, Germany
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • M. Calvi, T. Schmidt, K. Zhang
    PSI, Villigen PSI, Switzerland
  • H.M. Castaneda Cortes, J.A. Clarke, D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.W. Cross, L. Zhang
    USTRAT/SUPA, Glasgow, United Kingdom
  • G. Dattoli, F. Nguyen, A. Petralia
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • R.T. Dowd, D. Zhu
    AS - ANSTO, Clayton, Australia
  • W.D. Fang
    SINAP, Shanghai, People’s Republic of China
  • A. Faus-Golfe, Y. Han
    LAL, Orsay, France
  • E.N. Gazis, N. Gazis
    National Technical University of Athens, Zografou, Greece
  • R. Geometrante, M. Kokole
    KYMA, Trieste, Italy
  • V.A. Goryashko, M. Jacewicz, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • X.J.A. Janssen, J.M.A. Priem
    VDL ETG, Eindhoven, The Netherlands
  • A. Latina, X. Liu, C. Rossi, D. Schulte, S. Stapnes, X.W. Wu, W. Wuensch
    CERN, Geneva, Switzerland
  • O.J. Luiten, P.H.A. Mutsaers, X.F.D. Stragier
    TUE, Eindhoven, The Netherlands
  • J. Marcos, E. Marín, R. Muñoz Horta, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • G. Taylor
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431
The H2020 CompactLight Project (www. CompactLight.eu) aims at designing the next generation of compact X-rays Free-Electron Lasers, relying on very high gradient accelerating structures (X-band, 12 GHz), the most advanced concepts for bright electron photo injectors, and innovative compact short-period undulators. Compared to existing facilities, the proposed facility will benefit from a lower electron beam energy, due to the enhanced undulators performance, and will be significantly more compact, with a smaller footprint,  as a consequence of the lower energy and the high-gradient X-band structures. In addition, the whole infrastructure will also have a lower electrical power demand as well as lower construction and running costs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB032  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB074 Start-to-End Simulations of the Compact Light Project Based on an S-Band Injector and an X-Band LINAC 1836
 
  • E. Marín, R. Muñoz Horta, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • A.A. Aksoy
    Ankara University, Accelerator Technologies Institute, Golbasi, Turkey
  • S. Di Mitri
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • A. Latina
    CERN, Geneva, Switzerland
  • S.B. van der Geer
    Pulsar Physics, Eindhoven, The Netherlands
 
  Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431
In this paper we report the start-to-end simulation results of one of the options under consideration for the CompactLight Project (XLS). The XLS is a hard X-ray Free Electron Laser under design, using the latest concepts for bright electron photo injectors, very high-gradient X-band structures, and innovative short-period undulators. Presently there exist various tracking codes to conduct the design process. Therefore identifying the most convenient code is of notable importance. This paper compares the tracking codes, Placet and General Particle Tracer, using the XLS lattice based on a S and X-band Injector. The calculation results in terms of beam quality and tracking performance of a full 6-D simulation are presented.
[*] The CompactLight Design Study Project, IPAC2019 proceedings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB074  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)