Paper | Title | Page |
---|---|---|
TUPRB088 | Generation of High Peak Power Hard X-Rays at LCLS-II with Double Bunch Self-seeding | 1863 |
|
||
Funding: This work was supported by the U.S. Department of Energy Contract No. DE-AC02-76SF00515. We propose to use existing LCLS copper S-band linac double bunch infrastructure to significantly improve LCLS-II hard X-ray performance. In our setup, we use the first bunch to generate a strong seeding X-ray signal, and the second bunch, initially traveling off-axis, to interact with the seed in the amplifier undulator and generate a near TW, 15 fs duration X-ray pulse in the 4 to 8 keV photon energy range. We investigate, via numerical simulations, the required transverse beam dynamics and the four crystals X-ray monochromator to be added to the existing LCLS-II beamline and discuss the final properties of the hard X-ray pulses and their potential application in high intensity, high-field physics experiments, including QED above the Schwinger critical field. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB088 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPRB091 | Study of XFEL Third Harmonic Radiation at LCLS | 1875 |
|
||
Funding: This work was supported by the U.S. Department of Energy Contract No. DE-AC02-76SF00515. In this paper, we focus on characterization of the nonlinear third harmonic radiation properties at Linac Coherent Light Source (LCLS). In addition, we experimentally perform third harmonic self-seeding, using diamond crystal attenuator in the hard X-ray self-seeding chicane. We discuss warm beam effects in such scheme, justifying recently proposed two bunch configuration for harmonic lasing. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB091 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPRB096 | Test of an X-ray Cavity using Double-Bunches from the LCLS Cu-Linac | 1887 |
|
||
Funding: This work is supported by U.S. DOE, Office of Science, Office of BES, under Contract No. DE-AC02-06CH11357 (ANL) and DE-AC02-76SF00515 (SLAC). We discuss a proposal to test the operation of an X-ray cavity consisting of Bragg reflectors. The test will con-stitute a major step demonstrating the feasibility of either an X-ray regenerative amplifier FEL or an X-ray FEL Oscillator. These cavity-based X-ray FELs will provide the full temporal coherence lacking in the SA-SE FELs. An X-ray cavity of rectangular path will be constructed around the first seven LCLS-II undulator units. The Cu-linac will produce a pair of electron bunches separated by the cavity-round-trip distance during each linac cycle. The X-ray pulse produced by the first bunch is deflected into the cavity and returns to the undulator where it is amplified due to the presence of the second bunch. The key challenges are: the preci-sion of the cavity mechanical construction, the quality of the diamond crystals, and the electron beam stability. When the LCLS-II super-conducting linac becomes available, the cavity can then be used for high-repetition rate studies of the X-ray RAFEL and XFELO concepts. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB096 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEXPLM1 | XFEL Operational Flexibility due to the Dechirper System | 2219 |
|
||
Funding: U.S.Department of Energy, Office of Science, Laboratory Directed Research and Development (LDRD) program at SLAC National Accelerator Laboratory, under Contract No. DE-AC02-76SF00515. The RadiaBeam/SLAC dechirper was installed to demonstrate the concept of using wakefields from a corrugated structure to change the energy profile along an electron bunch. Since installation, the system has allowed a large number of additional XFEL operating modes including fresh-slice two-color or three color operation, fresh-slice seeding, passive streaking, etc. This talk will discuss the results from using the dechirper system and possible implementation issues related to the high-rate LCLS-II. Lutman, A. A. et al. Nat. Photon. 10, 745-750 (2016).; Nat. Photon. 10, 695-696 (2016); other papers in submission. |
||
![]() |
Slides WEXPLM1 [5.744 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEXPLM1 | |
About • | paper received ※ 10 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |