Author: Ma, J.Y.
Paper Title Page
TUPTS045 Simulation Analysis of LLRF Feedforward Compensation to Beam Loading for CiADS LINAC 2027
TUPTS042   use link to see paper's listing under its alternate paper code  
 
  • X.C. Xu, J.Y. Ma
    IMP/CAS, Lanzhou, People’s Republic of China
 
  A simulation is coded to calculate the beam loading in the cavity of CiADS and the response of the LLRF system. In the pulse operating mode, the fluctuation of amplitude and phase of the cavity field contributed by the transient beam loading is traced. During the simulation the effect of beam current fluctuation, and timing jitter were determined. The deviation margin of relational parameters is lined out to meet the requirement for cavity stability with amplitude 0.1% and phase 0.1°.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS045  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB044 Microphonics Simulation and Parameters Design of the SRF Cavities for CiADS 2903
SUSPFO066   use link to see paper's listing under its alternate paper code  
 
  • J.Y. Ma, G. Huang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  The CiADS (China initiative Accelerator Driven System) proton Linac is designed to accelerate CW beams of up to 500 MeV and 5mA, which is delivered to the spallation target. Since the beam power will eventually reach 2.5 MW, the beam loss should be restricted, which is sensitive to the SC cavity stability. On CW operating mode, the main perturbation to the cavity is microphonics. This paper will describe a set of tools developed to simulate performance of the cavity and its LLRF control system in order to ensure proper cavity operation under microphonics. The simulation tools describe a relationship between microphonics and the RF parameters. The microphonics effect to the cavity is simulated. The tolerated intensity of microphonics is determined by simulation, in order to satisfy the stability of amplitude and phase with 0.1% and 0.1 degree respectively.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB044  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)