Author: Luo, Q.
Paper Title Page
MOPRB031 Progress of Conceptual Study for the Accelerators of a 2-7GeV Super Tau Charm Facility at China 643
 
  • Q. Luo, W. Li, D.R. Xu
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • W.W. Gao, J.Q. Lan
    Fujian University of Technology, Fuzhou, People’s Republic of China
 
  Funding: Supported by National Natural Science Foundation of China U1832169 and the Double Fist-Class University Project Foundation of USTC.
This paper shows the progress of the conceptual study for the accelerators of a super tau charm facility in China. Since the BEPCII will finish its historical mission in 5~10 years and its upgrade plan will only achieve a small luminosity enhancement of 3~5 times, a new next generation tau-charm collider will play an irreplaceable role in future high energy physics study. The luminosity of this successor is about 5×1034cm−2s−1 pilot and 1×1035cm−2s−1 nominal, with the electron beam longitudinally polarized at the IP. The general scheme of the accelerators and the beam pa-rameters are shown. Several key technologies such as beam polarization and beam emittance diagnostics are also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB031  
About • paper received ※ 14 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB032 Interaction Section Lattice Design for a STCF Project 646
 
  • W.W. Gao, J.Q. Lan
    Fujian University of Technology, Shangjie, People’s Republic of China
  • Q. Luo
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  The Super Tau-Charm Factory (STCF) planning in China is characterized with high luminosity, wide energy range and high longitudinal polarized electron beam. In order to achieve high luminosity, this project will adopt the recently proposed collision scheme based on Large Piwinski angle and Crab Waist. In this paper, a preliminary lattice design of interaction region meeting the above collision scheme is described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB032  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW044 Study on the Influence of Beam Transverse Position on the Cavity Bunch Length Measurement 2578
 
  • Q. Wang, S.M. Jiang, Q. Luo, B.G. Sun
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: Work supported by National Key R&D Program of China (Grant No. 2016YFA0401900 and No. 2016YFA0401903) and The National Natural Science Foundation of China (Grant No. U1832169 and No. 11575181).
Monopole modes in the resonant cavity are wildly used to obtain the beam current and the bunch length, while dipole modes are used to measure the beam transverse position. It is generally recognized that the monopole modes are independent of the beam transverse offset. In this paper, the influence of beam transverse offset on the bunch length measurement using monopole modes is analyzed. The simulation results show that the relative error of the bunch length measurement is less than 1 % when the beam offset is within 1 mm.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW044  
About • paper received ※ 25 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)