Author: Lucas, T.G.
Paper Title Page
WEPRB001 The Effect of the SLED Installation on Extracted and Lost Beam at the Australian Synchrotron Linac. 2794
SUSPFO001   use link to see paper's listing under its alternate paper code  
 
  • P.J. Giansiracusa, T.G. Lucas, R.P. Rassool, M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
  • M.J. Boland
    University of Saskatchewan, Saskatoon, Canada
  • M.J. Boland
    CLS, Saskatoon, Saskatchewan, Canada
  • M.P. Lafky
    AS - ANSTO, Clayton, Australia
 
  A recent upgrade to the high power RF network of the linac at the Australian Synchrotron included a SLED Type 1 Pulse Compressor allowing for the operation of its 100 MeV linac using a single klystron. We explore the effects of the SLED installation on the properties of the beam extracted from the linac with a particular focus on the energy spread and bunch train profile. Additionally, the optical fibre beam loss monitor (oBLM), also recently commissioned, was employed to provide shot-by-shot feedback on loss location and intensity to investigate the change in beam losses.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB001  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB021 Commissioning of S-band Cavity Test Facility at Elettra for Conditioning of High Gradient Structures for the Fermi Linac Upgrade 2846
 
  • N. Shafqat, L. Giannessi, C. Masciovecchio, M. Milloch, C. Serpico, M. Svandrlik, M. Trovò
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Bopp, R. Zennaro
    PSI, Villigen PSI, Switzerland
  • T.G. Lucas
    The University of Melbourne, Melbourne, Victoria, Australia
 
  FERMI is the seeded Free Electron Laser (FEL) user facility at Elettra laboratory in Trieste, operating in the VUV to soft X-rays spectral range. In order to extend the FEL spectral range to shorter wavelengths, a feasibility study for increasing the Linac energy from 1.5 GeV to 1.8 GeV is actually going on. A short prototype of a new High Gradient (HG) S-band accelerating structure has been built in collaboration with Paul Scherrer Institute (PSI). The new structures are intended to replace the present Backward Travelling Wave (BTW) sections and tailored to be operated at a gradient of 30 MV/m. For RF conditioning and high power testing of prototype, a Cavity Test Facility (CTF) is commissioned at FERMI. The test facility is equipped with RF pulse compressor system and a dedicated diagnostic for breakdown rate (BDR) measurements and events localization. In this paper we present in detail cavity test facility of FERMI and high power testing of the first prototype.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB021  
About • paper received ※ 08 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB059 Dark Current Analysis at CERN’s X-band Facility 2944
 
  • D. Banon-Caballero, M. Boronat, V. Sánchez Sebastián, A. Vnuchenko
    IFIC, Valencia, Spain
  • N. Catalán Lasheras, S. Pitman, M. Widorski, W. Wuensch, V. del Pozo Romano
    CERN, Meyrin, Switzerland
  • A. Faus-Golfe
    LAL, Orsay, France
  • B. Gimeno
    UVEG, Burjasot (Valencia), Spain
  • T.G. Lucas, M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
  • W.L. Millar
    Lancaster University, Lancaster, United Kingdom
  • J. Paszkiewicz
    University of Oxford, Oxford, United Kingdom
 
  Dark current is particularly relevant during operation in high-gradient linear accelerators. Resulting from the capture of field emitted electrons, dark current produces additional radiation that needs to be accounted for in experiments. In this paper, an analysis of dark current is presented for four accelerating structures that were tested and conditioned in CERN’s X-band test facility for CLIC. The dependence on power, and therefore on accelerating gradient, of the dark current signals is presented. The Fowler-Nordheim equation for field emission seems to be in accordance with the experimental data. Moreover, the analysis shows that the current intensity decreases as a function of time due to conditioning, but discrete jumps in the dark current signals are present, probably caused by breakdown events that change the emitters’ location and intensity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB059  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)