Paper |
Title |
Page |
THPGW042 |
Applications of Compact Laser Plasma Accelerator (CLAPA) Beamline in Peking University |
3676 |
SUSPFO059 |
|
|
- D.Y. Li, J.E. Chen, Y.X. Geng, X.Y. Hu, C.C. Li, Q. Liao, C. Lin, H.Y. Lu, W.J. Ma, M.J. Wu, X.H. Xu, X.Q. Yan, T. Yang, Y.Y. Zhao, J.G. Zhu, K. Zhu
PKU, Beijing, People’s Republic of China
|
|
|
Proton beam with energies less than 10 MeV, <1% energy spread, several to tens of pC charge can be stably produced and transported in Compact LAser Plasma Accelerator (CLAPA) at Peking University. The CLAPA beam line is an object-image point analysing system, which ensures the transmission efficiency and energy selection accuracy for proton beams with initial large divergence angle and energy spread. A spread-out Bragg peak (SOBP) is produced with high precision beam control, which is essential for cancer therapy. Other primary application experiments based on laser-accelerated proton beam have also been carried out, such as proton radiograph, stress testing for tungsten, irradiation of semi-conductor sensor to simulate the space irradiation environment and so on.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW042
|
|
About • |
paper received ※ 15 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPGW045 |
A Simple Way to Introduce an Ajustable Femtosecond Pre-Pulse to Enhance Laser-Driven Proton Acceleration |
3686 |
SUSPFO073 |
|
|
- P.J. Wang, Z.X. Cao, Y.X. Geng, D.F. Kong, C. Lin, JB. Liu, H.Y. Lu, W.J. Ma, Z.S. Mei, Z.P. Pan, Y.R. Shou, D.H. Wang, S.R. Xu, X.Q. Yan, Y.Y. Zhao
PKU, Beijing, People’s Republic of China
- G.Y. Gao
LMU, Garching, Germany
|
|
|
We demonstrate a simple way to introduce a femtosecond pre-pulse with adjustable intensity and delay without using an additional compressor to enhance laser-driven proton acceleration. Targets with different thicknesses were shoot at normal incidence by varying the pre-pulses. Experimental results show that significant enhancement on the proton energy can be achieved when the intensity of pre-pulse is optimized. Density profile of preplasma was obtained by bydrodynamic simulations. PIC simulations reveal that the preplasma generated by a femtosecond pre-pulse can increase the intensity of main pulse.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW045
|
|
About • |
paper received ※ 30 April 2019 paper accepted ※ 19 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|