Author: Lobanov, N.R.
Paper Title Page
TUPRB001 Nanosecond Pulsing for Tandem Accelerator 1673
 
  • P. Linardakis, N.R. Lobanov, D.C. Tempra
    Research School of Physics and Engineering, Australian National University, Canberra, Australian Capitol Territory, Australia
 
  Funding: The Australian Federal Government Superscience/EIF funding under the NCRIS mechanism
A pulsed system capable of delivering up to a few microampere bursts of ions with mass range M=1 - 100 amu with a duration of approximately 1 ns is described. The system consists of a negative ion source, three frequency harmonic buncher - which uses the entire tandem electrostatic accelerator as a drift path to produce bunched ion bursts at the targets or linac entry - and high energy choppers. The buncher consists of a single acceleration gap with aligned retractable grids.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB001  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS001 Development of Cryogenic Suspension in the ANU 8t Superconducting Solenoid With Iron Yoke 4103
 
  • S.T. Battisson, N.R. Lobanov, D. Tsifakis, T.B. Tunningley
    Research School of Physics and Engineering, Australian National University, Canberra, Australian Capitol Territory, Australia
  • J.F. Smith
    University of Surrey, Department of Physics, Guildford, United Kingdom
 
  Funding: The Australian Federal Government Superscience/EIF funding under the NCRIS mechanism.
An 8 Tesla superconducting solenoid was commissioned at The Australian National University to make precision measurements of fusion cross-sections. Forces between the solenoid and the iron yoke that houses it must always be maintained within safe limits and precision location of the solenoid coil is necessary to achieve this. Thermal contraction of components can impact the locating structure of the solenoid coil, leading to unsafe forces. Improvements to this structure allowed successful completion of the first fusion measurements with the 8T solenoidal separator, and demonstrated that it is now ready for a program of fusion measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS001  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)