Author: Lindberg, R.R.
Paper Title Page
TUPRB096 Test of an X-ray Cavity using Double-Bunches from the LCLS Cu-Linac 1887
 
  • K.-J. Kim, L. Assoufid, R.R. Lindberg, X. Shi, D. Shu, Yu. Shvyd’ko, M. White
    ANL, Argonne, Illinois, USA
  • F.-J. Decker, Z. Huang, G. Marcus, T.O. Raubenheimer, D. Zhu
    SLAC, Menlo Park, California, USA
 
  Funding: This work is supported by U.S. DOE, Office of Science, Office of BES, under Contract No. DE-AC02-06CH11357 (ANL) and DE-AC02-76SF00515 (SLAC).
We discuss a proposal to test the operation of an X-ray cavity consisting of Bragg reflectors. The test will con-stitute a major step demonstrating the feasibility of either an X-ray regenerative amplifier FEL or an X-ray FEL Oscillator. These cavity-based X-ray FELs will provide the full temporal coherence lacking in the SA-SE FELs. An X-ray cavity of rectangular path will be constructed around the first seven LCLS-II undulator units. The Cu-linac will produce a pair of electron bunches separated by the cavity-round-trip distance during each linac cycle. The X-ray pulse produced by the first bunch is deflected into the cavity and returns to the undulator where it is amplified due to the presence of the second bunch. The key challenges are: the preci-sion of the cavity mechanical construction, the quality of the diamond crystals, and the electron beam stability. When the LCLS-II super-conducting linac becomes available, the cavity can then be used for high-repetition rate studies of the X-ray RAFEL and XFELO concepts.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB096  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYYPLM3 High-Charge Injector for on-Axis Injection Into A High-Performance Storage Ring Light Source 3423
 
  • K.C. Harkay, I.A. Abid, T.G. Berenc, W. Berg, M. Borland, A.R. Brill, D.J. Bromberek, J.M. Byrd, J.R. Calvey, J. Carvelli, J.C. Dooling, L. Emery, T. Fors, G.I. Fystro, A. Goel, D. Hui, R.T. Keane, R. Laird, F. Lenkszus, R.R. Lindberg, T.J. Madden, B.J. Micklich, L.H. Morrison, S.J. Pasky, V. Sajaev, N. Sereno, H. Shang, T.L. Smith, J.B. Stevens, Y. Sun, G.J. Waldschmidt, J. Wang, U. Wienands, K.P. Wootton, A. Xiao, B.X. Yang, Y. Yang, C. Yao
    ANL, Argonne, Illinois, USA
  • A. Blednykh
    BNL, Upton, Long Island, New York, USA
  • A.H. Lumpkin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Next-generation, high-performance storage ring light sources based on multibend achromat optics will require on-axis injection because of the extremely small dynamic aperture. Injectors will need to supply full-current bunch replacement in the ring with high single-bunch charge for swap-out. For upgrades of existing light sources, such as the Advanced Photon Source Upgrade (APS-U), it is economical to retain the existing injector infrastructure and make appropriate improvements. The challenges to these improvements include achieving high single-bunch charge in the presence of instabilities, beam loading, charge stability and reliability. In this paper, we discuss the rationale for the injector upgrades chosen for APS-U, as well as backup and potential alternate schemes. To date, we have achieved single-bunch charge from the injectors that doubles the original design value, and have a goal to achieve about three times the original design value.
 
slides icon Slides THYYPLM3 [1.499 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THYYPLM3  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)