Paper |
Title |
Page |
MOPRB057 |
An Approach to Alleviating Heavy Beam Loading Effect on the Synchrotron Machine Through the Existed Low Level RF Feedback System |
697 |
|
- L.-H. Chang, F.Y. Chang, M.H. Chang, S.W. Chang, L.J. Chen, F.-T. Chung, Y.T. Li, M.-C. Lin, Z.K. Liu, C.H. Lo, Ch. Wang, M.-S. Yeh, T.-C. Yu
NSRRC, Hsinchu, Taiwan
|
|
|
To pursue the highest brightness and intensity of the synchrotron light, the synchrotron machines are pushed to operate with as high as possible of the beam current. To suppress the heavy beam loading effects, the direct RF feedback is currently widely used. This paper provides an another approach to alleviating the heavy beam loading effects on machine operation. Different from the direct RF feedback technique, this approach need not add additional feedback loop to the existed RF feedback system. Applying a proper angle rotation to the I-Q error signals of the cavity voltage, before entering the existed feedback loop, is the only action required in this approach. The paper will explain the working mechanism and investigate the behaviour of this approach, through an example case, with numerical simulation.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB057
|
|
About • |
paper received ※ 16 April 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPMP047 |
Upgrade of the Cryogenic Control System for SRF Modules at the Taiwan Light Source |
1356 |
|
- F.-T. Chung, F.Y. Chang, L.-H. Chang, M.H. Chang, S.W. Chang, L.J. Chen, Y.T. Li, M.-C. Lin, Z.K. Liu, C.H. Lo, Ch. Wang, M.-S. Yeh, T.-C. Yu
NSRRC, Hsinchu, Taiwan
|
|
|
An upgrade of the cryogenic control system for superconducting radio-frequency (SRF) modules of the Taiwan Light Source (TLS) has been completed. The biggest challenge was to recover all protection and operational functions, while minimizing the quantity of vented helium from SRF modules while replacing valve controllers. Gradually, this work was finished within several one- and ten-day scheduled machine shutdown periods for accelerator maintenance. No large helium vent nor pollution of the cryogenic system occurred during all component replacements and function verifications. Functions of the cryogenic electronics were improved, whereas the valve controllers are upgraded to new versions to increase reliability and availability. Communications with the data acquisition system was also secured by buffered signal processing module so that device shutdown of the data acquisition system will not interrupt the cryogenic valve operation.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP047
|
|
About • |
paper received ※ 29 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPRB093 |
RF Data Acquisition and Soft Alarm System for the Taiwan Photon Source |
4039 |
|
- Z.K. Liu, F.Y. Chang, L.-H. Chang, M.H. Chang, S.W. Chang, L.J. Chen, F.-T. Chung, Y.T. Li, M.-C. Lin, C.H. Lo, Ch. Wang, M.-S. Yeh, T.-C. Yu
NSRRC, Hsinchu, Taiwan
|
|
|
The Taiwan Photon Source (TPS) is a modern, high brightness 3 GeV light source. A data acquisition pro-gram for the radio frequency (RF) system, including a transient data recorder, a long term data archiver and real time data monitoring, has been developed for the analysis of RF trips and RF system debugging. A soft alarm system is implemented as well utilizing EPICS and python packages. The hardware architecture and the functionality of the RF data acquisition and soft alarm system will be discussed in this article.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB093
|
|
About • |
paper received ※ 09 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPRB094 |
Study of the System Stability for the Digital Low Level RF System Operated at High Beam Currents |
4042 |
|
- Z.K. Liu, F.Y. Chang, L.-H. Chang, M.H. Chang, S.W. Chang, L.J. Chen, F.-T. Chung, Y.T. Li, M.-C. Lin, C.H. Lo, Ch. Wang, M.-S. Yeh, T.-C. Yu
NSRRC, Hsinchu, Taiwan
|
|
|
The purpose of a Low-Level Radio Frequency (LLRF) system is to control the amplitude and phase of the field in the accelerating cavity. A digital LLRF (DLLRF) system will be installed in the Taiwan Photon Source (TPS) storage ring in 2019. The system stability depends much on the feedback parameters. An instability of the cavity voltage controlled by a DLLRF was observed during machine tests with high beam current and low feedback gain. A simulation model for the digital LLRF system with beam-cavity interaction was developed to investigate this instability and simulations and machine test results will be presented here.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB094
|
|
About • |
paper received ※ 07 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPTS075 |
Performance Tests of a Digital Low-Level Rf-System at the TPS |
4292 |
|
- F.Y. Chang, L.-H. Chang, M.H. Chang, S.W. Chang, L.J. Chen, F.-T. Chung, Y.T. Li, M.-C. Lin, Z.K. Liu, C.H. Lo, Ch. Wang, M.-S. Yeh, T.-C. Yu
NSRRC, Hsinchu, Taiwan
|
|
|
A digital low-level RF (DLLRF) control system for the cavity gap voltage is now common throughout the world. At the Taiwan Photon Source (TPS) we installed and operated a DLLRF in the booster ring in 2018 successfully and plan to install it also in the storage ring in 2019. Operational and beam loading tests of the DLLRF at the storage ring are ongoing. The performance of the DLLRF in the presence of a large number of 60 Hz harmonics and its stability for gap voltage and phase will be discussed.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS075
|
|
About • |
paper received ※ 10 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|