Author: Li, L.
Paper Title Page
THPRB044 LLRF Control System for RF GUN at SXFEL Test Facility 3912
 
  • L. Li, Q. Gu, Y.J. Liu, C.C. Xiao, J.Q. Zhang
    SINAP, Shanghai, People’s Republic of China
  • Y.F. Liu, Z. Wang
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  A Soft X-ray Free Electron Laser Test Facility (SXFEL-TF) based on normal conducting linear accelerator was constructed at the Shanghai Synchrotron Radiation Facility (SSRF) campus by a joint team of Shanghai Institute of Applied Physics and Tsinghua University. It consists of multiple Radio Frequency (RF) stations with standing wave cavity (RF Gun) and traveling wave accelerating structures working at different frequencies. Low Level Radio Frequency (LLRF) system is used to measure the RF field in the cavities or structures and correct the fluctuation in RF fields with pulse-to-pulse feedback controllers. This paper describes the hardware and architecture of the LLRF system for electromagnetic filed stabilization inside the radio frequency electron gun, in the SXFEL-TF. A complete control path has be presented, including RF front-end board, I/Q detector and feedback controller. Algorithms used to stabilize the RF field have been presented as well as the software environment used to provide remote access to the control device. Finally, the performance of the LLRF system that was realized in the beam commissioning is presented and meets the high accuracy requirements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB044  
About • paper received ※ 23 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB049 MODELING AND SIMULATION FOR MULTI-FEEDING CAVITY WITHOUT BEAM LOADING 3921
 
  • K. Liu, Q. Gu, L. Li, Ch. Wang, M.H. Zhao
    SINAP, Shanghai, People’s Republic of China
  • Q. Gu
    SSRF, Shanghai, People’s Republic of China
 
  The Multi-feeding cavity usually be applied in super-conducting and normal-conducting RF cavity. The differences between multiple input couplers in coupler coefficient, incident power and phase will cause the cavity field stabilities can not meet the requirements. For explore the influences of these differences and develop equations for measurement, a multi-feeding LCR transient model was developed. As two-feeding cavity, the VHF photocathode electron gun was model and simulated in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB049  
About • paper received ※ 06 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)