Author: Lau, H.T.
Paper Title Page
THXXPLS1 Status of the Carbon Commissioning and Roadmap Projects of the MedAustron Ion Therapy Center Accelerator 3404
 
  • M.T.F. Pivi, L. Adler, A. De Franco, F. Farinon, N. Gambino, G. Guidoboni, G. Kowarik, M. Kronberger, C. Kurfürst, H.T. Lau, S. Myalski, S. Nowak, C. Schmitzer, I. Strašík, P. Urschütz, A. Wastl
    EBG MedAustron, Wr. Neustadt, Austria
  • L.C. Penescu
    Abstract Landscapes, Montpellier, France
 
  The synchrotron-based MedAustron Particle Therapy Accelerator MAPTA located in Austria, delivers proton beams for medical treatment in the energy range 62-252 MeV/n since the year 2016 and is in preparation to provide C6+ carbon ions in the range 120-400 MeV/n to two of the three clinically used ion therapy irradiation rooms. In addition, carbon and proton beams, the latter with up to 800 MeV, will be provided to a fourth room dedicated to research. After beam generation and pre-acceleration to 7MeV, a 77m long synchrotron accelerates particles up to the requested energy for clinical treatment. A third-order resonance extraction method is used to extract the particles from the synchrotron in a slow controlled process and then transfer the particles to the 4 irradiation rooms with a spill time of 0.1-10 seconds to facilitate the control of the delivered radiation dose during clinical treatments. Presently, proton beams are delivered to the horizontal and vertical beam lines of three rooms. Commissioning of the accelerator with carbon ions has been completed for one beam line. In parallel, the installation of the beam line magnets for the proton Gantry is ongoing. A review of the accelerator and the status of the carbon commissioning, ongoing in parallel with clinical operations, and an outlook to future roadmap projects are presented.  
slides icon Slides THXXPLS1 [17.863 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THXXPLS1  
About • paper received ※ 19 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW001 Design of LhARA - Laser Hybrid Accelerator for Radiobiological Applications 3578
 
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • O. Ettlinger, C. Hunt, A. Kurup, K.R. Long, Z. Najmudin, J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • H.T. Lau
    EBG MedAustron, Wr. Neustadt, Austria
 
  Recent developments of using lasers interacting with targets for the creation of ion beams offer a possibility to provide beams for radiobiology research. This research aims to precisely study the radiobiological effectiveness of charged particles on various cultures of cells, which is essential to inform next generation hadron therapy treat-ment plans. The Laser hybrid Accelerator for Radiobio-logical Applications (LhARA) has been proposed to use a laser driven beam, which will be captured and focused using Gabor Lenses. The beam will be then energy and momentum selected to create a beam for in-vitro cells studies or sent to a post-accelerator ring to create beam for in-vivo studies. The optical design of LhARA is pre-sented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW001  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)