Paper | Title | Page |
---|---|---|
WEPTS018 | Experimental Observation of Low-Order Collective Oscillation Modes in a Strong-Focusing Lattice | 3130 |
|
||
In a conventional linear Paul trap (LPT), four electrode rods are placed symmetrically around the trap axis to generate a radio-frequency quadrupole field for transverse ion confinement. The periodic nature of the external focusing potential can give rise to serious ion losses under a specific condition. The loss mechanism is essentially the same as the coherent betatron resonance well-known in intense beam dynamics[*,**]. In fact, the collective motion of an ion plasma in the LPT is shown equivalent to that of a charged-particle beam traveling through an alternating-gradient focusing lattice. In the present study, we perform the direct measurement of low-order coherent oscillation modes in the LPT by detecting image currents induced on the electrodes’ surfaces. The four-rod structure of the LPT allows us to pick up feeble signals of the dipole and quadrupole oscillations of a plasma bunch. These signals are Fourier analyzed to evaluate the coherent oscillation tune at different initial ion densities. The time evolution of the coherent motion is also discussed in this paper.
* K. Moriya et al., Phys. Rev. Accel. Beams Vol.19, 114201 (2016). ** K. Ito et al., Phys. Rev. Accel. Beams Vol. 20, 064201 (2017). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS018 | |
About • | paper received ※ 26 April 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |