Author: Krupa, M.
Paper Title Page
MOPTS054 Status of the CLEAR Electron Beam User Facility at CERN 983
 
  • K.N. Sjobak, E. Adli, C.A. Lindstrøm
    University of Oslo, Oslo, Norway
  • M. Bergamaschi, S. Burger, R. Corsini, A. Curcio, S. Curt, S. Döbert, W. Farabolini, D. Gamba, L. Garolfi, A. Gilardi, I. Gorgisyan, E. Granados, H. Guerin, R. Kieffer, M. Krupa, T. Lefèvre, S. Mazzoni, G. McMonagle, N. Nadenau, H. Panuganti, S. Pitman, V. Rude, A. Schlogelhofer, P.K. Skowroński, M. Wendt, A.P. Zemanek
    CERN, Geneva, Switzerland
  • A. Lyapin
    UCL, London, United Kingdom
 
  The CERN Linear Electron Accelerator for Research (CLEAR) has now finished its second year of operation, providing a testbed for new accelerator technologies and a versatile radiation source. Hosting a varied experimental program, this beamline provides a flexible test facility for users both internal and external to CERN, as well as being an excellent accelerator physics training ground. The energy can be varied between 60 and 220 MeV, bunch length between 1 and 4 ps, bunch charge in the range 10 pC to 2 nC, and number of bunches in the range 1 to 200, at a repetition rate of 0.8 to 10 Hz. The status of the facility with an overview of the recent experimental results is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS054  
About • paper received ※ 12 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW088 Characterisation of Electro-Optic Pickups for High Bandwidth Diagnostics at the High Luminosity LHC 2690
 
  • A. Arteche, A. Bosco, S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
  • S.E. Bashforth, A. Bosco, S.M. Gibson, I.S. Penman
    JAI, Egham, Surrey, United Kingdom
  • M. Krupa, T. Lefèvre
    CERN, Meyrin, Switzerland
 
  Funding: Work supported by UK STFC grants ST/N001583/1, JAI at Royal Holloway University of London and CERN.
A high bandwidth electro-optical beam position monitor is under development for the High Luminosity LHC. A series of measurements of the electro-optic signals were previously obtained by an EO-BPM prototype installed in the SPS. This paper focuses on an advanced design that would further improve the sensitivity of the pick-up by optimising the shape of the metallic electrode mounted onto the crystal. The proposed upgraded electro-optic pickups significantly increase the image field profile of the passing bunch inside a lithium niobate crystal embedded within the pickup. This work is based on parametric studies, performed using CST particle studio, investigating various electro-optic (electrode and crystal) configurations. We present the expected performance of the different designs, alongside with their evaluation on a test bench, highlighting the most relevant choice for a prototype pick-up to be installed on LHC
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW088  
About • paper received ※ 22 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)