Author: Kostroun, V.O.
Paper Title Page
MOPRB075 Radiation Limits on Permanent Magnets in CBETA 745
 
  • V.O. Kostroun, C.M. Gulliford
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The Cornell Brookhaven Energy Recovery Linac Test Accelerator (CBETA), under construction at Cornell, uses Fixed Field Alternating Gradient (FFAG) Halbach magnets made from grade N35EH NdFeB. To reduce the 1% level magnetization errors in fabricated blocks to magnets with better than 0.001 field accuracy, iron wire shimming is necessary. This also limits magnetization changes by external influences to the ~1% level. The ambient radiation field present during CBETA operation can induce permanent magnet demagnetization. The radiation field arises from electrons in the beam halo hitting the vacuum chamber and from residual gas, Touschek and Intra-Beam scattering. The radiation dose rate due to electrons striking the vacuum chamber of a 4 cell straight section of CBETA FFAG magnets was calculated using the many particle Monte Carlo radiation code MCNP6.2. MCNP6.2 has a track-length heating tally for different particles and a collision heating tally that gives energy deposition/mass from all particles in the problem. Calculations show that electron loss has to be a fraction of a watt/m to keep the dose rate at an acceptable level during the accelerator lifetime.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB075  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW085 A Hard X-Ray Compact Compton Source at CBETA 1604
 
  • K.E. Deitrick, C. Franck, G.H. Hoffstaetter, V.O. Kostroun, K.W. Smolenski
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J. Crone, H.L. Owen
    UMAN, Manchester, United Kingdom
  • B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Compton backscattering at energy recovery linacs (ERLs) promises high flux, high energy x-ray sources in the future, made possible by high quality, high repetition rate electron beams produced by ERLs. CBETA, the Cornell-BNL ERL Test Accelerator currently being built and commissioned at Cornell, is an SRF multi-turn ERL using Non-Scaling Fixed Field Alternating-gradient (NS-FFA) arcs. CBETA has high quality design parameters with an anticipated top energy of 150 MeV on the fourth pass. The expected parameters of a Compton source at CBETA include a top x-ray energy of over 400 keV with a flux on the order of 1012 ph/s. In this paper, we present anticipated parameters and potential applications in science and engineering for this source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW085  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW102 CBETA - Novel Superconducting ERL 1651
 
  • R.J. Michnoff, J.S. Berg, S.J. Brooks, J. Cintorino, Y. Hao, C. Liu, G.J. Mahler, F. Méot, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, S. Trabocchi, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, S.J. Full, F. Furuta, R.E. Gallagher, M. Ge, C.M. Gulliford, B.K. Heltsley, G.H. Hoffstaetter, D. Jusic, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • M. Dunham, C.E. Mayes
    SLAC, Menlo Park, California, USA
 
  Funding: New York State Research&Development Authority - NYSERDA agreement number 102192
We are successfully commissioning a unique Cornell University and Brookhaven National Laboratory Electron Recovery Linac (ERL) Test Accelerator ’CBETA’ [1]. The ERL has four accelerating passes through the supercon-ducting linac with a single Fixed Field Alternating Linear Gradient (FFA-LG) return beam line built of the Halbach type permanent magnets. CBETA ERL accelerates elec-trons from 42 MeV to 150 MeV, with the 6 MeV injec-tor. The novelties are that four electron beams, with ener-gies of 42, 78, 114, and 150 MeV, are merged by spreader beam lines into a single arc FFA-LG beam line. The elec-tron beams from the Main Linac Cryomodule (MLC) pass through the FFA-LG arc and are adiabatically merged into a single straight line. From the straight section the beams are brought back to the MLC the same way. This is the first 4 pass superconducting ERL and the first single permanent magnet return line.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW102  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS093 Magnetized Gridded Thermionic Electron Source 2140
SUSPFO122   use link to see paper's listing under its alternate paper code  
 
  • M.S. Stefani
    ODU, Norfolk, Virginia, USA
  • C.M. Gulliford, V.O. Kostroun, C.E. Mayes, K.W. Smolenski
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • F.E. Hannon, M. Poelker, R. Suleiman
    JLab, Newport News, Virginia, USA
 
  Funding: This manuscript has been authored by Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177 with the U.S. Department of Energy.
The study of magnetized electron beam has become a high priority for its use in ion beam cooling as part of Electron Ion Colliders and the potential of easily forming flat beams for various applications. The demand for high average current for effective ion beam cooling has caused consideration of using bunched magnetized electron beam produced by a gridded thermionic electron gun. This paper presents the design of a potential electron source for JCIEC first measurements characterizing the beam properties of a magnetized thermionic gun.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS093  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)