Paper | Title | Page |
---|---|---|
WEPTS022 | Stability Tune Diagram of a High-Intensity Hadron Ring | 3141 |
|
||
To date, the optimum operating point of a high-intensity hadron ring has been determined on the basis of the conventional incoherent picture. It is generally chosen on the tune diagram such that the so-called "incoherent tune spread" of a stored beam does not overlap with low-order "single-particle resonance" lines. We here propose a new approach to construct the stability tune diagram on the basis of the self-consistent coherent picture. The betatron resonance condition recently conjectured from one-dimensional Vlasov predictions is employed for this purpose, which predicts the existence of twice as many resonance stop bands as expected from the well-known incoherent resonance condition at high beam density *,**. The proposed general rules for the stability-chart construction are very simple and free from any model-dependent unobservables like space-charge-depressed incoherent tunes. As an example, we apply the present rules to the lattice of the rapid cycling synchrotron at J-PARC and explain why the operating bare tunes of this machine have been chosen slightly below 6.5 in both transverse directions.
* K. Ito et al., Phys. Rev. Accel. Beams 20, 064201 (2017). ** H. Okamoto and K. Yokoya, Nucl. Instrum. Meth. A 482, 51 (2002). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS022 | |
About • | paper received ※ 09 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |