Author: Kim, K.
Paper Title Page
MOPRB088 Study of Fluctuations in Undulator Radiation in the IOTA Ring at Fermilab 777
SUSPFO128   use link to see paper's listing under its alternate paper code  
 
  • I. Lobach
    University of Chicago, Chicago, Illinois, USA
  • A. Halavanau, Z. Huang, V. Yakimenko
    SLAC, Menlo Park, California, USA
  • K. Kim
    ANL, Argonne, Illinois, USA
  • V.A. Lebedev, S. Nagaitsev, A.L. Romanov, G. Stancari, A. Valishev
    Fermilab, Batavia, Illinois, USA
  • A.Y. Murokh
    RadiaBeam, Los Angeles, California, USA
  • T.V. Shaftan
    BNL, Upton, Long Island, New York, USA
 
  We study turn-by-turn fluctuations in the number of emitted photons in an undulator, installed in the IOTA electron storage ring at Fermilab with an InGaAs PIN photodiode and an integrating circuit. Our study was motivated by the previous experiment *. We propose a theoretical model for the experimental data from * and in our own experiment we attempted to verify the model in an independent and more systematic way. Moreover, these fluctuations are an interesting subject for a study by itself, since they act as a seed for SASE in FELs. We improve the precision of the measurements from * by subtracting the average signal amplitude using a comb filter with a one-turn IOTA delay, and by using a special algorithm for noise subtraction. We obtain a reasonable agreement between our theoretical model and experiment. Along with repeating the experiment from *, which was performed at a constant beam current, we also collect data for fluctuations in undulator light at different beam current values. Lastly, in our experiment we were able to see the transition from Poisson statistics to Super-Poisson statistics for undulator light, whereas in * only the latter statistics was observed.
* M. Teich et al., PRL, vol. 65, no. 27, p. 3393 (1990).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB088  
About • paper received ※ 14 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW089 Mechanical Design of a Diamond Crystal Hard X-Ray Self-Seeding Monochromator for PAL-XFEL 3782
 
  • D. Shu, J.W.J. Anton, S.P. Kearney, K. Kim, Yu. Shvyd’ko
    ANL, Argonne, Illinois, USA
  • H.-S. Kang, C.-K. Min, B.G. Oh, S.Y. Rah
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357
As a part of the Argonne Strategic Partnership Project (SPP) 85H21, a collaboration between Advanced Photon Source (APS), Argonne National Laboratory (ANL) and Pohang Accelerator Laboratory (PAL), we have designed, constructed, and tested a thin-film-diamond monochromator for the PAL X-ray Free-Electron-Laser (PAL-XFEL) hard x-ray self-seeding project*. The mechanical design of the PAL-XFEL diamond crystal hard x-ray self-seeding monochromator is based on the APS design of a diamond-crystal monochromator for the LCLS hard x-ray self-seeding project** with enhanced diamond crystal holder for two thin-film-diamond crystals with thicknesses of 30 microns and 100 microns***. The customized high quality thin-film-diamonds and special graphite holder were provided by the Technological Institute for Super-hard and Novel Carbon Materials of Russia (TISNCM)****, and tested at the APS***. An in-vacuum multi-axis precision positioning mechanism is designed to manipulate the duo-thin-film diamonds holder with resolutions and stabilities required by the hard x-ray self-seeding physics. Mechanical specifications, designs, and preliminary test results of the diamond monochromator are presented in this paper.
*Chang-Ki Min, et al, sub. J. Sync. Rad., 2018
**D. Shu, et al, J. Phys.: Conf. Ser. 425 (2013) 052004
***Y. Shvyd’ko, et al, FEL2017, Santa Fe
****Polyakov S, et. al, 2011 Diam. Rel. Mat. 20 726
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW089  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)