Author: Karimi, H.
Paper Title Page
WEPTS101 A General Comparison on Impedance Theory and CST Simulation of Discontinuities 3352
 
  • N. Khosravi, E. Ahmadi, M. Akhyani, S. Dastan, A.M. Mash’al
    ILSF, Tehran, Iran
  • H. Karimi
    Isfahan University of Technology, Isfahan, Iran
 
  Inhomogeneity of vacuum chamber components is the main source of coupling impedance. Nowadays, wake potential is mostly predictable by 3D codes. Analytical prediction of impedance theories can be helpful as a side solution. On the other hand, some asymmetries in the geometry of components might make troubles and lead to imprecise numerical results in 3D simulations. Analytical approximation of discontinuities, holes, and grooves can give us an estimation of expected results and can be used as a benchmark in the case that we do not have any experimental data. To clarify the validity of theoretical expressions, general discontinuities are simulated in CST. The comparison of final results is presented here. At last, resistive wall impedance and some general discontinuities of components at ILSF storage ring are compared from the theoretical and simulation point of view.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS101  
About • paper received ※ 01 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)