Author: Karamyshev, O.
Paper Title Page
TUPTS050 Design and Analysis of the Cold Cathode Ion Source for 200 MeV Superconducting Cyclotron 2040
SUSPFO077   use link to see paper's listing under its alternate paper code  
 
  • S.W. Xu
    USTC, Hefei, Anhui, People’s Republic of China
  • L. Calabretta
    INFN/LNS, Catania, Italy
  • G. Chen, M. Xu
    ASIPP, Hefei, People’s Republic of China
  • O. Karamyshev, G.A. Karamysheva, G. Shirkov
    JINR, Dubna, Moscow Region, Russia
 
  SC200 is a superconducting isochronous cyclotron which generates 200 MeV, 400 nA proton beam for particle therapy. The cold-cathode-type Penning ion gauge (PIG) ion source for the internal ion source of SC200 has been selected as an alternative and preliminary designed. In this paper, design of ion source and test bench are demonstrated. Currently, the properties of ion source have been simulated for a variety of electric field distributions and magnetic field strengths. The secondary electron emission in electromagnetic field has been simulated. It provides reference for the optimization design of arc chamber. In addition, the sample of cold-cathode-type ion source has been tested on the test bench and extracted beam intensity has been measured over 200 μA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS050  
About • paper received ※ 30 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS059 Conceptual Design of the SC230 Superconducting Cyclotron for Proton Therapy 2058
TUPTS055   use link to see paper's listing under its alternate paper code  
 
  • O. Karamyshev, S. Gurskiy, G.A. Karamysheva, D.V. Popov, G. Shirkov, S.G. Shirkov, V.L. Smirnov, S.B. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
 
  Physical design of the compact superconducting cyclotron SC230 (91.5MHz) has been performed. The cyclotron will deliver up to 230 MeV beam for proton therapy and medico-biological research. We have performed simulations of magnetic and accelerating systems of the SC230 cyclotron and specified the main parameters of the accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS059  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS060 Beam Dynamics Simulations in the Dubna SC230 Superconducting Cyclotron for Proton Therapy 2061
 
  • G.A. Karamysheva, S. Gurskiy, O. Karamyshev, D.V. Popov, G. Shirkov, S.G. Shirkov, V.L. Smirnov, S.B. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
  • V. Malinin
    JINR/DLNP, Dubna, Moscow region, Russia
 
  We present results of the beam dynamics simulation for the compact isochronous superconducting cyclotron SC230. We have performed beam tracking starting from the ion source. The extraction system scheme and results of beam extraction simulations are presented. The codes and methods used for beam tracking are briefly described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS060  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB030 Commissioning of RF System of the 200 MeV Proton Cyclotron 2877
 
  • G. Chen, C. Chao, G. Liu, X.Y. Long, Z. Peng, C.S. Yu, X. Zhang, Y. Zhao
    ASIPP, Hefei, People’s Republic of China
  • L. Calabretta, A.C. Caruso
    INFN/LNS, Catania, Italy
  • O. Karamyshev, G.A. Karamysheva, G. Shirkov
    JINR, Dubna, Moscow Region, Russia
 
  Funding: (1) National Natural Science Foundation of China under grant No. 11775258, 11575237; (2) International Sci-entific and Technological Cooperation Project of An-hui (grant No. 1704e1002207).
The SC200 superconducting accelerator which is designed for proton therapy is currently under con-struction. The RF (Radio Frequency) system has been designed and constructed as a subsystem of the SC200. To verify the stability of the RF system, a high-power feeding test was performed for the cavity. This paper mainly reports on the overview of RF systems and the prelimary high-power commissioning, as well as the problems found and improvements made during the commissioning process. The results show that the RF system has initially achieved the designed goal, and each loop (amplitude, tuning, phase) can work effec-tively. The cavity can operate in a ~50 kW continuous wave state. Next, the formal RF conditioning will be carried out after the complete assembly of cyclotron, so as to confirm the cavity can run smoothly under 80 kW, which is part of the whole commissioning process.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB030  
About • paper received ※ 22 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)