Author: Jin, X.J.
Paper Title Page
MOPMP009 Effect of Initial Parameters on the Super Flat Beam Generation with the Phase-Space Rotation for Linear Colliders 442
 
  • M. Kuriki, R. Tamura
    HU/AdSM, Higashi-Hiroshima, Japan
  • H. Hayano, X.J. Jin, T. Konomi, Y. Seimiya, N. Yamamoto
    KEK, Ibaraki, Japan
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • J.G. Power
    ANL, Argonne, Illinois, USA
  • K. Sakaue
    The University of Tokyo, The School of Engineering, Tokyo, Japan
  • M. Washio
    RISE, Tokyo, Japan
 
  Funding: This work is partly supported by Japan-US Cooperative grant for scientific studies, Grant aid for scientific study by MEXT Japan (KAKENHI) Kiban B.
Linear collider is a concept to realize e+e collision beyond the limitation of the ring colliders by the synchrotron radiation. To obtain an enough luminosity, eg. 1.0·10+34 cm-2sec-1, the beam is focused down to nano-meter size with a high aspect ratio. This super flat beam is useful to improve the luminosity and to compensate the beam-beam effect, eg. Beamstrahlung. In a conventional design, the super-flat beam is produced by radiation damping in a storage ring. We propose to produce this super-flat beam with phase-space rotation techniques. We employ both Round to Flat Beam Transformation and Transverse to Longitudinal Emittance eXchange, the super flat beam can be generated by controlling the space-charge effect which spoiled the performance. We present the RFBT performance with respect to the initial conditions, i.e. beam size, initial emittance, solenoid field (strength and profile), etc.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP009  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP019 Vacuum Performance of the NEG-coated Chamber for U#19 at PF-ring 1276
 
  • Y. Tanimoto, T. Honda, X.J. Jin, T. Nogami, R. Takai, M. Yamamoto
    KEK, Ibaraki, Japan
 
  At the Photon Factory storage ring (PF-ring) in KEK, a new APPLE-II type elliptically polarizing undulator (U#19) was installed in October 2018. The U#19 vacuum chamber is 4.1 meters in length, and the beam channel with a 15x90 elliptical profile and two cooling-water channels alongside were formed by extrusion of A6060-T6 aluminum alloy. The inner surface of the beam channel is coated with a Ti-Zr-V Non-Evaporable Getter (NEG) thin film, as it has a high effective pumping speed and a low Photon Stimulated Desorption (PSD) yield. After the installation of the U#19, the neighboring uncoated chambers and vacuum components were baked out at 200 °C for 44 hours, and then the NEG coating was activated at 160 °C for 48 hours. As a result, the pressures in the neighboring chambers reached as low as 10-8 Pa. The conditioning of the vacuum chambers with irradiation of Synchrotron radiation evolved favorably as had been expected by a combined simulation of Synrad and Molflow, leading to a satisfactory recovery of the beam lifetime. Vacuum performance of the NEG-coated chamber was assessed especially by means of a residual gas analysis, and the properties of the NEG film were characterized by surface analyses including SEM, EDX, and XRD.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP019  
About • paper received ※ 16 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)