Author: Ito, K.
Paper Title Page
WEPTS018 Experimental Observation of Low-Order Collective Oscillation Modes in a Strong-Focusing Lattice 3130
 
  • K. Ito, H. Higaki, H. Okamoto
    HU/AdSM, Higashi-Hiroshima, Japan
  • T. Kurauchi
    Hiroshima University, Faculty of Science, Higashi-Hirosima, Japan
 
  In a conventional linear Paul trap (LPT), four electrode rods are placed symmetrically around the trap axis to generate a radio-frequency quadrupole field for transverse ion confinement. The periodic nature of the external focusing potential can give rise to serious ion losses under a specific condition. The loss mechanism is essentially the same as the coherent betatron resonance well-known in intense beam dynamics[*,**]. In fact, the collective motion of an ion plasma in the LPT is shown equivalent to that of a charged-particle beam traveling through an alternating-gradient focusing lattice. In the present study, we perform the direct measurement of low-order coherent oscillation modes in the LPT by detecting image currents induced on the electrodes’ surfaces. The four-rod structure of the LPT allows us to pick up feeble signals of the dipole and quadrupole oscillations of a plasma bunch. These signals are Fourier analyzed to evaluate the coherent oscillation tune at different initial ion densities. The time evolution of the coherent motion is also discussed in this paper.
* K. Moriya et al., Phys. Rev. Accel. Beams Vol.19, 114201 (2016).
** K. Ito et al., Phys. Rev. Accel. Beams Vol. 20, 064201 (2017).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS018  
About • paper received ※ 26 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS019 Accumulating Laser-Coolable Ions in a Linear Paul Trap for Ultrahigh-Density Beam Dynamics Experiment 3134
 
  • K. Ito, H. Higaki, T. Masuda, H. Okamoto
    HU/AdSM, Higashi-Hiroshima, Japan
 
  An ion plasma confined in a linear Paul trap (LPT) exhibits the dynamic behavior physically equivalent to that of a charged-particle beam in an alternating-gradient transport channel. The Simulator of Particle Orbit Dynamics (S-POD) is a compact apparatus designed on the basis of this fact for diverse beam-physics experiments. We have so far employed Ar+ ions that can readily be produced from neutral Ar gas atoms through the electron bombardment process. A space-charge-induced tune shift of up to about 20% of the bare tune can be achieved in Ar+ plasmas [*]. We are now preparing for future S-POD experiment to explore even higher beam-density regions. For this purpose, a large number of Ca+ ions need to be stored in the LPT. Since S-POD is equipped with a powerful laser cooler for Ca+, the use of this ion species vastly expands the density range we can survey. The production of an intense bunch of Ca+ ions is, however, not so easy because of some technical reasons. By optimizing the operating condition of a multi-sectioned LPT, we succeeded in increasing the number of accumulated Ca+ ions to the level comparable to Ar+ ion plasmas. This paper reports on updated results of the experiment.
* K. Ito et al., Phys. Rev. Accel. Beams Vol. 20, 064201 (2017).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS019  
About • paper received ※ 26 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)