Paper | Title | Page |
---|---|---|
MOPMP050 | Performance of CeC PoP Accelerator | 559 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Coherent electron cooling experiment is aimed for demonstration of the proof-of-principle demonstration of reduction energy spread of a single hadron bunch circulating in RHIC. The electron beam should have the required parameters and its orbit and energy should be matched to the hadron beam. In this paper we present the achieved electron beam parameters including emittance, energy spread, and other critical indicators. The operational issues as well as future plans are also discussed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP050 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB085 | First Results from Commissioning of Low Energy RHIC Electron Cooler (LEReC) | 769 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The brand new non-magnetized bunched beam electron cooler (LEReC) [1] has been built to provide luminosity improvement for Beam Energy Scan II (BES-II) physics program at the Relativistic Heavy Ion Collider (RHIC) BES-II [2]. The LEReC accelerator includes a photocathode DC gun, a laser system, a photocathode delivery system, magnets, beam diagnostics, a SRF booster cavity, and a set of Normal Conducting RF cavities to provide sufficient flexibility to tune the beam in the longitudinal phase space. This high-current high-power accelerator was successfully commissioned in period of March -September 2018. Beam quality suitable for cooling has been demonstrated. In this paper we discuss beam commissioning results and experience learned during commissioning. [1] A. Fedotov et al., ’Status of bunched beam electron cooler LEReC’ in these proceedings. [2] C.Liu et al., ’Improving luminosity of Beam Energy Scan II at RHIC’ in these proceedings. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB085 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTS078 | Coherent Electron Cooling (CeC) Experiment at RHIC: Status and Plans | 2101 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and NSF Grant No. PHY-141525 We will present currents status of the CeC experiment at RHIC and discuss plans for future. Special focus will be given to unexpected experimental results obtained during RHIC Run 18 and discovery of a previously unknown type of microwave instability. We called this new phenomenon micro-bunching Plasma Cascade Instability (PCI). Our plan for future experiments includes suppressing this instability in the CeC accelerator and using it as a broad-band amplifier in the CeC system. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS078 | |
About • | paper received ※ 19 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |