Paper | Title | Page |
---|---|---|
TUPGW008 | PERLE: A High Power Energy Recovery Facility | 1396 |
|
||
PERLE is a proposed high power Energy Recovery Linac, designed on multi-turn configuration, based on SRF technology, to be hosted at Orsay-France in a col-laborative effort between local laboratories: LAL and IPNO, together with an international collaboration involv-ing today: CERN, JLAB, STFC ASTeC Daresbury, Liverpool University and BINP Novosibirsk. PERLE will be a unique leading edge facility designed to push advances in accelerator technology, to provide intense and highly flexible test beams for component development. In its final configuration, PERLE provides a 500 MeV elec-tron beam using high current (20 mA) acceleration during three passes through 801.6 MHz cavities. This presenta-tion outlines the technological choices, the lattice design and the main component descriptions. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW008 | |
About • | paper received ※ 19 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THXXPLM3 |
Experimental and Simulation Studies of Cooling of a Bunched Ion Beam in a Storage Ring by a Bunched Electron Beam | |
|
||
Cooling of a high energy ion beam is essential for future electron-ion colliders to reach high luminosity. It is critical to demonstrate experimentally cooling by a bunched electron beam and to benchmark the experimental data with simulations. Such experimental and simulation studies were carried out by a collaboration of Jefferson Lab and Institute of Modern Physics (IMP), utilizing a DC cooler at IMP. The thermionic gun of the DC cooler was modified by pulsing its grid voltage to produce cooling electron pulses in a pulse length range of 0.07 - 3.5 µs, with a 250 kHZ repetition frequency. The performed experiments clearly demonstrated cooling of a RF focused ion bunches by this pulsed electron beam. The momentum spread of cooled ion bunch has been reduced from ~2x10-3 to ~6x10-4 in less than 0.5 second. The simulation results agree with the measurements qualitatively. In this paper, we present a brief overview of the experiments and also show the main experimental and simulation results. | ||
![]() |
Slides THXXPLM3 [6.436 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |