Author: Hunt, J.R.
Paper Title Page
MOPTS101 Study of the Transverse Emittance Blow-Up Along the Proton Synchrotron Booster Cycle During Wire Scanner Operation 1110
 
  • A. Santamaría García, F. Antoniou, H. Bartosik, J.A. Briz Monago, G.P. Di Giovanni, A. Guerrero, J.R. Hunt, B. Mikulec, F. Roncarolo, E. Senes, V. Vlachoudis
    CERN, Geneva, Switzerland
  • E. Senes
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
 
  Transverse emittance measurements with wire scanners have been extensively studied across the accelerator complex at CERN due to their important role in characterizing the beam and their complicated modeling. In recent years, this topic has been of particular interest for the LHC Injectors Upgrade (LIU) project, where a tight transverse emittance blow-up budget between the Proton Synchrotron Booster (PSB) and the Proton Synchrotron (PS) is imposed to assure the required beam brightness for the High Luminosity LHC (HL-LHC). In order to maintain a high brightness beam, any source of emittance blow-up along the PSB cycle needs to be identified and mitigated. While wire scanners have been mostly used at extraction energy in the PSB, they can also operate along the energy cycle. The scattering of the protons with the wire increases considerably at lower energies, leading to an overestimation of the beam emittance. In this contribution we present the most recent studies, focusing on precisely quantifying the blow-up created by the flying wire with measurements in an optimized set-up and compared to FLUKA simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS101  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW090 Emittance Evolution of Low Energy Antiproton Beams in the Presence of Deceleration and Cooling 2697
 
  • J.R. Hunt, J. Resta-López, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C. Carli, B. Dupuy, D. Gamba
    CERN, Geneva, Switzerland
  • J.R. Hunt, J. Resta-López, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The commissioning of the Extra Low Energy Antiproton (ELENA) ring has been completed before the start of the second long shutdown (LS2) at CERN. First beams to an experiment in a new experimental zone have as well already been delivered. ELENA will begin distributing 100 keV cooled antiproton beams to all antimatter experiments in 2021. This contribution presents measurements made using a novel scraping algorithm capable of determining the emittance of non-Gaussian beams in the presence of dispersive effects. The emittance is sampled during various sections of the ELENA deceleration cycle, investigating the efficiency of the electron cooler and extracting additional information from the beam. The electron cooler is shown to effectively reduce the transverse phase space after blow-up during deceleration. The beam is characterised before extraction for the purpose of tracking and optimisation of the new electrostatic transfer lines currently being installed. Finally, the application of the scraping algorithm to other machines with a scraper located in a dispersive region is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW090  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS060 Multi-objective Optimization of 3D Beam Tracking in Electrostatic Beamlines 3263
 
  • V. Rodin, J.R. Hunt, J. Resta-López, B. Veglia, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J.R. Hunt, J. Resta-López, V. Rodin, B. Veglia, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: *This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721559.
After CERN’s Long Shutdown 2 (LS2) the Extra Low Energy Antiproton (ELENA) ring will begin providing extremely low energy (100 keV) antiproton beams to the antimatter experiments in the AD hall. To allow for simultaneous operation and guarantee maximum efficiency, all transfer lines will be based on electrostatic optics and short pulse (∼100 ns) deflectors. Currently, only a limited number of simulation codes allow a realistic representation of these elements, limiting the capabilities for beam quality optimization. In this contribution methods for modelling realistic electrostatic optical elements and perform 3D tracking studies through these are presented. A combination of finite element methods and experimental measurements are used along with a modified version of the G4Beamline and BMAD codes. Multi-objective optimization techniques are then applied to optimize beam transfer and beam quality at various points along the transfer lines.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS060  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)