Author: Huang, W.-H.
Paper Title Page
TUPTS053 Design of a 217 MHz VHF Gun at Tsinghua University 2050
SUSPFO084   use link to see paper's listing under its alternate paper code  
 
  • L.M. Zheng, H. Chen, Y.C. Du, W.-H. Huang, R.K. Li, Z.Z. Li, C.-X. Tang
    TUB, Beijing, People’s Republic of China
  • B. Gao
    IHEP, Beijing, People’s Republic of China
 
  A 217 MHz VHF gun operating in CW mode is designing at Tsinghua University. The cathode gradient is designed to be 30 MV/m to accelerate the electron bunches up to 878 keV. The cavity profile is optimized in CST to minimize the input power, peak surface electric field, and peak wall power density. The multipacting analysis and the thermal analysis are also presented in this paper. Further gun shape optimization and mechanical design are ongoing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS053  
About • paper received ※ 15 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB080 Optimization of RF Cavities Using MOGA for ALS-U 3007
 
  • H.Q. Feng, K.M. Baptiste, D. Li, T.H. Luo
    LBNL, Berkeley, California, USA
  • H.Q. Feng, W.-H. Huang, Z.N. Liu, C.-X. Tang
    TUB, Beijing, People’s Republic of China
 
  Funding: Director of Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
A multi-objective genetic algorithm-based optimiza-tion process has been applied to optimize the RF design of a 500 MHz main cavity and a 1.5 GHz Higher Harmon-ic Cavity (HHC) for the Advanced Light Source upgrade (ALS-U) in Lawrence Berkeley National Laboratory (LBNL). For the main cavity, a significant improvement, compared with the existing ALS cavity, has been achieved in cavity shunt impedance and power loss den-sity simultaneously. The field strengths and distribution of the optimized structure are analysed for further re-search. For the HHC, a cavity with low R/Q has been pre-liminary designed to mitigate the beam instability. This study also serves as an example of how a genetic algo-rithm can be used for optimizing RF cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB080  
About • paper received ※ 16 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB081 Design Study on Higher Harmonic Cavity for ALS-U 3011
 
  • H.Q. Feng, K.M. Baptiste, S. De Santis, D. Li, T.H. Luo
    LBNL, Berkeley, California, USA
  • H.Q. Feng, W.-H. Huang, Z.N. Liu, C.-X. Tang
    TUB, Beijing, People’s Republic of China
 
  Funding: Director of Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The ALS upgrade (ALS-U) to a diffraction-limited light source [1] depends on the ability to lengthen the stored bunches to limit the emittance growth and increase the beam life time. Higher harmonic cavities (HHCs), also known as Landau cavities, have been proposed to in-crease beam lifetime and Landau damping by lengthen-ing the bunch. We present an optimized 1.5 GHz normal conducting HHC design for the ALS-U with a supercon-ducting-like geometry using multi-objective genetic algorithm (MOGA) for lower R/Q. The optimization goal is to reach the required shunt impedance while maintain-ing a relatively high Q value of the cavities. To minimize the coupled bunch instabilities, higher-order mode (HOM) of the HHC as well as corresponding impedance are explored and characterized.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB081  
About • paper received ※ 16 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS028 Transverse-Longitudinal Coupling for Harmonic Generation and Bunch Length Manipulation 3160
SUSPFO055   use link to see paper's listing under its alternate paper code  
 
  • X.J. Deng, W.-H. Huang, C.-X. Tang, Y. Zhang
    TUB, Beijing, People’s Republic of China
  • A. Chao
    SLAC, Menlo Park, California, USA
 
  A general harmonic generation and bunch length manipulation scheme using transverse-longitudinal coupling is presented. The method makes use of the freedom in projecting the three beam eigen-emittances into different physical dimensions. A realization of this coupling lattice, a PEHG variant, is given as an example. For the purpose of harmonic generation and bunch compression, this method is advantageous when the transverse emittance is small. The combination with sawtooth waveform modulation is proposed to boost the bunching further. Transverse-longitudinal coupling in storage rings are briefly discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS028  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP020 Single-Shot Cascade High Energy Electron Radiography based on Strong Permanent Magnet Quadrupole Composed Imaging Lens 3491
SUSPFO085   use link to see paper's listing under its alternate paper code  
 
  • Z. Zhou, Y.-C. Du, W.-H. Huang
    TUB, Beijing, People’s Republic of China
 
  High energy electron imaging, an extension of conventional transmission electron microscopy, is suitable for imaging of thicker objects and expected to be a promising tool for diagnostics of high energy density physics (HEDP). A cascade high energy electron imaging system using two-stage imaging lenses based on strong permanent magnet quadrupoles is designed, optimized and finally installed at Tsinghua university. Encouraging result of 1.6-μm space resolution is obtained in our primary experiments, along with the clear imaging of a spherical capsule as a substitute of the targets used in inertial confinement fusion. Successful implement of cascade high energy electron imaging system is necessary for reaching better resolving power of the imaging system, and well matching of design, simulation with experimental results paves the way to high energy electron microscopy to provide full capacities for diagnostics of HEDP with sub-um and picosecond spatiotemporal resolutions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP020  
About • paper received ※ 07 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB045 A Novel Microwave Switch-Based LLRF System for Long-Term System Phase Drift Calibration 3915
 
  • Z.Y. Lin, Y.-C. Du, W.-H. Huang, C.-X. Tang, J. Tang
    TUB, Beijing, People’s Republic of China
  • G. Huang, Y.L. Xu
    LBNL, Berkeley, California, USA
  • Z. Sun, D. Zhang
    HZCY Technologies Co., Ltd., Beijing, People’s Republic of China
 
  The long-term phase drift is one of the important issue for the stability of the Low level RF system. The signal crosstalk and temperature effect on the RF field detectors will significantly limited the performance of the phase detecting precise and the phase locking. A novel micro-wave switch-based LLRF system has been developed in Tsinghua accelerator lab. The microwave switch are ap-plied to in the chopper circuit to turn continuous signal into pulse signal in the time domain to avoid the mutual signal interference. In this paper the LLRF system based on microwave switch is present. The preliminary long-term experiments result shows the phase stability can achieve about 50fs RMS slow drift; and the peak-to-peak value of the slow drift was (~2°C p-p) over 4 days.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB045  
About • paper received ※ 22 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB046 The Preliminary Long-Term Slow Drift Calibration Study in Low-Level Rf System 3918
 
  • Z.Y. Lin, Y.-C. Du, W.-H. Huang, C.-X. Tang, J. Tang
    TUB, Beijing, People’s Republic of China
  • G. Huang, Y.L. Xu
    LBNL, Berkeley, California, USA
  • Z. Sun, D. Zhang
    HZCY Technologies Co., Ltd., Beijing, People’s Republic of China
 
  The phase drift of the RF signal in the low-level radio frequency (LLRF) system is observed in the long-term operation, which limits the performance and stability of the LLRF system. The long-term drift was reproduced in the lab. Its effect and sources of error were explored in the simple LLRF46 board and the simplest LLRF system. It is founded that the temperature will significantly lead to the phase distortion of the two signal channels, although with the same electron device. The distortion will finally cause the long-term drift with temperature floating. A fixed phase calibration signal (CAL signal) is applied to deal with the signal channels difference. The preliminary tests were conducted and the results were analysed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB046  
About • paper received ※ 22 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)