Author: Huang, J.
Paper Title Page
TUPMP022 Research on Digital Scanning Power Supply Technology for Proton Therapy System 1286
 
  • J. Huang, M. Fan, J. Yang, L.G. Zhang
    HUST, Wuhan, People’s Republic of China
  • T. Yu, C. Zuo
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People’s Republic of China
 
  Funding: Work supported by The National Key Research and Development Program of China, with grant No. 11505068
Proton has great advantages in the field of cancer radiotherapy because of its good characteristic of Bragg peak. HUST-PTF is a proton therapy facility under development in Huazhong University of science and technology. It delivers the beam to the patients with a pencil beam scanning nozzle. Scanning power supplies are placed in the nozzle of the proton therapy device and they are required high accuracy, high speed and high stability. In this paper,the structure diagram of HUST-PTF is shown. The parameters of scanning magnets and its power supply are introduced. Finally, some test results of power supply are shown. The next work will debug the control system of the scanning power supply and adjust it with the scanning magnet to see if it meets the design requirements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP022  
About • paper received ※ 19 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS043 PRELIMINARY MAGNETIC FIELD CALCULATION OF A 30-DEGREE DIPOLE MAGNET 4204
 
  • H. Liang, J. Huang, C. Jiang, T. Liu, B. Qin, K. Tang, J. Yang, J.Q. Ye
    HUST, Wuhan, People’s Republic of China
  • Y. Xie, T. Yu
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People’s Republic of China
 
  Preliminary design and field calculation of a 30-degree H-type dipole which can be applied to the beamline is introduced in this paper. According to the phys-ical requirements, 2D and 3D models are built and ana-lysed using OPERA. For achieving the magnetic field specifications, air slots are adopted, and trapezoidal shim on pole surface is used to improve the magnetic field error. Rogowski curve and harmonic shim at the pole end is used to reduce the integral magnetic field error and the higher order harmonic field error.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS043  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)