Paper | Title | Page |
---|---|---|
MOZPLS2 | Ion Collider Precision Measurements With Different Species | 28 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC, under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Precedent to electron cooling commissioning and collisions of Gold at various energies at RHIC in 2018, the STAR experiment desired an exploration of the chiral magnetic effect in the quark gluon plasma (QGP) with an isobar run, utilizing Ruthenium and Zirconium. Colliding Zr-96 with Zr-96 and Ru-96 with Ru-96 create the same QGP but in a different magnetic field due to the different charges of the Zr (Z=40) and Ru (Z=44) ions. Since the charge difference is only 10%, the experimental program requires exacting store conditions for both ions. These systematic error concerns presented new challenges for the Collider, including frequent reconfiguration of the Collider for the different ion species, and maintaining level amounts of instantaneous and integrated luminosity between two species. Moreover, making beams of Zr-96 and Ru-96 is challenging since the natural abundances of these isotopes are low. Creating viable enriched source material for Zr-96 required assistance processing from RIKEN, while Ru-96 was provided by a new enrichment facility under commissioning at Oak Ridge National Laboratory. |
||
![]() |
Slides MOZPLS2 [4.758 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZPLS2 | |
About • | paper received ※ 11 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOZZPLS1 | eRHIC Design Overview | 45 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The Electron-Ion Collider (EIC) is being envisioned as the next facility to be constructed by the DOE Nuclear Physics program. Brookhaven National Laboratory is proposing eRHIC, a facility based on the existing RHIC complex as a cost effective realization of the EIC project with a peak luminosity of 1034 cm-2 sec-1. An electron storage ring with an energy range from 5 to 18 GeV will be added in the existing RHIC tunnel. A spin-transparent rapid-cycling synchrotron (RCS) will serve as a full-energy polarized electron injector. Recent design improvements include reduction of the IR magnet strengths to avoid the necessity for Nb3Sn magnets, and a novel hadron injection scheme to maximize the integrated luminosity. We will provide an overview of this proposed project and present the current design status. |
||
![]() |
Slides MOZZPLS1 [5.428 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLS1 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP044 | Improving the Luminosity for Beam Energy Scan II at RHIC | 540 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The QCD (Quantum Chromodynamics) phase diagram has many uncharted territories, particularly the nature of the transformation from Quark-Gluon plasma (QGP) to the state of Hadronic gas. The Beam Energy Scan I (BES-I) at the Relativistic Heavy Ion Collider (RHIC) was completed but measurements had large statistical errors. To improve the statistical error and expand the search for first-order phase transition and location of the critical point, Beam Energy Scan II will commence in 2019 with a goal of improving the luminosity by a factor of 3-4. The beam lifetime at low energies was and will be limited by some physical effects of which the most significant are intrabeam scattering, space charge, beam-beam, persistent current effects. This article will review these potential limiting factors and introduce the countermeasures which will be in place to improve BES-II luminosity. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP044 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB072 | eRHIC in Electron-Ion Operation | 738 |
|
||
Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy. The design effort for the electron-ion collider eRHIC has concentrated on electron-proton collisions at the highest luminosities over the widest possible energy range. The present design also provides for electron-nucleon peak luminosities of up to 4.7·1033 cm-2s−1 with strong hadron cooling, and up to 1.7·1033 cm-2s−1 with stochastic cooling. Here we discuss the performance limitations and design choices for electron-ion collisions that are different from the electron-proton collisions. These include the ion bunch preparation in the injector chain, acceleration and intrabeam scattering in the hadron ring, path length adjustment and synchronization with the electron ring, stochastic cooling upgrades, machine protection upgrades, and operation with polarized electron beams colliding with either unpolarized ion beams or polarized He-3. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB072 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTS108 | Numerical Simulations of RHIC FY17 Spin Flipper Experiments | 2174 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Spin flipper experiments during RHIC Run 17 have demonstrated the 97% effectiveness of polarization sign reversal during stores. Zgoubi numerical simulations were setup to reproduce the experimental conditions. A very good agreement between the experimental measurements and simulation results was achieved at 23.8GeV, thus the simulations are being used to help optimize the various Spin Flipper parameters. The ultimate goal for these simulations is to serve as guidance towards a perfect flip at high energies to allow a routine Spin Flipper use during physics runs. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS108 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTS109 | Status of AC Dipole Project at Rhic Injectors for Polarized 3He, Update | 2177 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. An ac dipole will be used for the efficient transport of polarized 3He in the AGS Booster as it is accelerated to |Gγ|=10.5. The ac dipole introduces a coherent vertical beam oscillation which allows preservation of polarization through the two intrinsic resonances Gγ=12-νy and Gγ=6+νy resonances, by full spin flipping. The AGS Booster ac dipole will be tested with protons crossing the Gγ=0+νy intrinsic resonance, which has ac dipole requirements similar to polarized 3He crossing the Gγ=12-νy resonance, providing a convenient proof of principle. This paper gives a status of the project. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS109 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTS110 | Scanning the AC Dipole Resonance Proximity Parameter in the AGS Booster | 2179 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. An ac dipole system is installed in the AGS Booster in view of acceleration of polarized helion for RHIC and the eRHIC EIC. The amplitude of the vertical coherent oscillations induced by the ac dipole depends greatly on the resonance proximity parameter, δm, which is the distance between resonance tune and driving tune. Due to the non-zero momentum spread, particles with different momenta will have different value of δm. The rapid acceleration rate of the booster would cause δm to sweep, the amount of which would depend on the energy and the duration of the ac dipole cycle. These effects are simulated using zgoubi, which set a range of δm values suitable for both high spin flip efficiency and minimizing emittance growth, and the results of the simulations are discussed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS110 | |
About • | paper received ※ 12 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW122 | EXPERIMENTAL VERIFICATION OF TRANSPARENT SPIN MODE IN RHIC | 2783 |
|
||
Funding: Supported in part by the U.S. DoE under Contract No. DE-AC05-06OR23177 and by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DoE. High electron and ion polarizations are some of the key design requirements of a future Electron Ion Collider (EIC). The transparent spin mode, a concept inspired by the figure 8 ring design of JLEIC, is a novel technique for preservation and control of electron and ion spin polarizations in a collider or storage ring. It makes the ring lattice "invisible" to the spin and allows for polarization control by small quasi-static magnetic fields with practically no effect on the beam’s orbital characteristics. It offers unique opportunities for polarization maintenance and control in Jefferson Lab’s JLEIC and in BNL’s eRHIC. The transparent spin mode has been demonstrated in simulations and we now plan to test it experimentally. We present a design of an experiment using a polarized proton beam stored in one of the RHIC rings. In the experiment, one of the RHIC rings is configured in the transparent spin mode by aligning the axes of its two Siberian snakes. The experiment goals, procedures, hardware requirements and expected results are presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW122 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW124 | Spin Response Function for Spin Transparency Mode of RHIC | 2791 |
|
||
Funding: Supported by the U.S. DoE under Contracts No. DE-AC05-06OR23177 and DE-AC02-98CH10886. In the Spin Transparency (ST) mode of RHIC, the axes of its Siberian snakes are parallel. The spin tune in the ST mode is zero and the spin motion becomes degenerate: any spin direction repeats every particle turn. In contrast, the lattice of a conventional collider determines a unique stable periodic spin direction, so that the collider operates in the Preferred Spin (PS) mode. Contributions of perturbing magnetic fields to the spin resonance strengths in the PS mode are usually calculated using the spin response function. However, in that form, it is not applicable in the ST mode. This paper presents a response function formalism expanded for the ST mode of operation of conventional colliders with two identical Siberian snakes in the highly-relativistic limit. We present calculations of the spin response function for RHIC in the ST mode. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW124 | |
About • | paper received ※ 01 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |