Paper | Title | Page |
---|---|---|
MOPTS057 | SSPA upgrade plan design for CiADS | 990 |
|
||
Funding: Supported by the National natural science foundation of China (Grand No. 11525523 and 91426303) For ADS application, both research and commercial facilities requires extremely large amount of RF power to drive several mega watts beam power, so proper RF power upgrade plan can reduce the budget per phase and increase the valuable experience in engineering. CiADS (China initiative Accelerator Drive System) proposes to employ SSPA (Solid State Power Amplifier) as RF power source for flexible configuring and upgrading in the future. In this paper, from an engineering point of view, it is acceptable if proper matching beam current was selected for adopting fixed-coupling input coupler while only sacrificed some RF power during the upgrade plan. SSPA upgrade plan start with the stablility requirement to determine bandwidth, then combined with other RF power requirements to select output level, finally, checking how much the surplus of selected level SSPA for detuning control. The calculation and evaluation results for a §I{545}{MeV} physical design lattice illustrate that some resonance cavities had very limited surplus RF power left for detuning control that provided necessary optimization direction and guidelines for both physical design and SSPA arrangement. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS057 | |
About • | paper received ※ 30 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPTS059 | The Status of CiADS Superconducting LINAC | 994 |
|
||
CiADS (China initiative Accelerator Driven System) approved by Chinese government at 2016 aims to build the first ADS experimental facility to demonstrate the nuclear waste transmutation. The CiADS driving linac can accelerate 5 mA proton beam to 500 MeV at the beam power up to 2.5 MW with the state-of-the-art accelerator technologies. The challenging programs include beam loss control-oriented physics design, high performance CW operated superconducting cavities, SRF cryomod-ules, and highly efficient RF amplifier system. As the driving linac of the ADS system, the RAMI characters will serve as the design philosophy to guide the physics design and the choice of technical routes. The physics design and key technologies of the high-power machine are descried in the paper. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS059 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 24 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTS046 | Commissioning of a Compact THz Source Based on FEL | 2030 |
|
||
The layout of the THz source based on FEL was de-scribed in this paper. The THz source was based on a FEL which was composed of a compact 8-14MeV LINAC, undulator, optical resonance, THz wave measurement system and so on. The facility was designed in 2013 and the typical running parameter got in 2017 were as the following: energy is of 12.7MeV, energy spread is of 0.3%, macro-pulse is of 4 μs, pulse length of micro-pulse is of 6ps, emittance is of 24 mm.mrad. After that the ma-chine was commissioning for production THz radiation. In November 2018, the THz wave was test and got THz wave signal, the spectrum was also got. This year, we plan to measure the output power of the THz source. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS046 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPRB044 | Microphonics Simulation and Parameters Design of the SRF Cavities for CiADS | 2903 |
SUSPFO066 | use link to see paper's listing under its alternate paper code | |
|
||
The CiADS (China initiative Accelerator Driven System) proton Linac is designed to accelerate CW beams of up to 500 MeV and 5mA, which is delivered to the spallation target. Since the beam power will eventually reach 2.5 MW, the beam loss should be restricted, which is sensitive to the SC cavity stability. On CW operating mode, the main perturbation to the cavity is microphonics. This paper will describe a set of tools developed to simulate performance of the cavity and its LLRF control system in order to ensure proper cavity operation under microphonics. The simulation tools describe a relationship between microphonics and the RF parameters. The microphonics effect to the cavity is simulated. The tolerated intensity of microphonics is determined by simulation, in order to satisfy the stability of amplitude and phase with 0.1% and 0.1 degree respectively. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB044 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |