Paper | Title | Page |
---|---|---|
MOPMP001 | Optic Corrections for FCC-hh | 417 |
|
||
The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the options considered for the next generation accelerator in high-energy physics as recommended by the European Strategy Group. The evaluation of the various magnets mechanical error and field error tolerances in the arc sections of FCC-hh, as well as an estimation of the required correctors strengths, are important aspects of the collider design. In this study the mechanical tolerances, dipole and quadrupole field error tolerances for the arc sections of FCC-hh are evaluated. The consolidated correction schemes of the linear coupling (with skew quadrupoles) and of the beam tunes (with normal quadrupoles) are presented. The integration of the different ring insertions (interaction region, collimation, injection, etc) is also discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP001 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB001 | Low Emittance Tuning of FCC-ee | 574 |
|
||
The FCC-ee project studies the design of a future 100 km e+/e− circular collider for precision studies and rare decay observations in the range of 90 to 350 GeV center of mass energy with luminosities in the order of 1036 cm-2s-1. In order to reach these luminosity requirements, extreme focusing is needed in the interaction regions. For the Z energy (45.6 GeV) lattice, the maximum beta value is 8322 m, and the vertical beta function is 0.8 mm at the IP. These aspects of the FCC-ee lattice make it particularly susceptible to misalignments and field errors, and therefore present an appreciable challenge for emittance tuning. A challenging correction scheme is proposed to reduce the coupling and the vertical emittance. We describe a comprehensive correction strategy used for the low emittance tuning. The strategy includes special programs, that had been developed to optimise the lattice based on Dispersion Free Steering, linear coupling compensation based on Resonant Driving Terms and beta beat correction utilising response matrices. Thousands of misalignment and field error random seeds were introduced in MADX simulations and the final corrected lattices are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB001 | |
About • | paper received ※ 09 April 2019 paper accepted ※ 19 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW026 | Status of the Horizon 2020 EuPRAXIA Conceptual Design Study | 3638 |
|
||
Funding: This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No. 653782. The Horizon 2020 Project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to FEL pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for HEP detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW026 | |
About • | paper received ※ 26 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |