Paper | Title | Page |
---|---|---|
MOPGW124 | Coherent Synchrotron Radiation Simulation for CBETA | 406 |
|
||
CBETA is an energy recovery linac accelerating from 6 MeV to 150 MeV in four linac passes, using a single return beamline accepting all energies from 42 to 150 MeV. While CBETA gives promise to deliver unprecedentedly high beam current with simultaneously small emittance, Coherent Synchrotron Radiation (CSR) can pose detrimental effect on the beam at high bunch charges and short bunch lengths. To investigate the CSR effects on CBETA, we used the established simulation code Bmad to track a bunch with different parameters. We found that CSR causes phase space dilution, and the effect becomes more significant as the bunch charge and recirculation pass increase. Potential ways to mitigate the effect involving vacuum chamber shielding and increasing bunch length are being investigated. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW124 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB076 | CBETA Beam Commissioning Results | 748 |
|
||
We report on the first results of commissioning CBETAwith a fully closed return loop. We repeat much of our early commissioning from the fractional arc test, namely setting up the injection system, calibrating the main linac, and steering the beam through the first splitter line. Most importantly, first results from sending the beam all the way through the FixedField Alternating gradient permanent magnet return arc are described. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB076 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW085 | A Hard X-Ray Compact Compton Source at CBETA | 1604 |
|
||
Compton backscattering at energy recovery linacs (ERLs) promises high flux, high energy x-ray sources in the future, made possible by high quality, high repetition rate electron beams produced by ERLs. CBETA, the Cornell-BNL ERL Test Accelerator currently being built and commissioned at Cornell, is an SRF multi-turn ERL using Non-Scaling Fixed Field Alternating-gradient (NS-FFA) arcs. CBETA has high quality design parameters with an anticipated top energy of 150 MeV on the fourth pass. The expected parameters of a Compton source at CBETA include a top x-ray energy of over 400 keV with a flux on the order of 1012 ph/s. In this paper, we present anticipated parameters and potential applications in science and engineering for this source. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW085 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW086 | Energy and RF Cavity Phase Symmetry Enforcement in Multi-Turn ERL Models | 1606 |
|
||
In a multi-pass Energy Recovery Linac (ERL), each cavity must regain all energy expended from beam acceleration during beam deceleration, and the beam should achieve specific energy targets during each loop that returns it to the linac. For full energy recovery, and for every returning beam to meet loop energy requirements, we must optimize the phase and voltage of cavity fields in addition to selecting adequate flight times. If we impose symmetry in time and energy during acceleration and deceleration, fewer parameters are needed, simplifying the optimization. As an example, we present symmetric models of the Cornell BNL ERL Test Accelerator (CBETA) with solutions that satisfy the optimization targets of loop energy and zero cavity loading. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW086 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 19 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW102 | CBETA - Novel Superconducting ERL | 1651 |
|
||
Funding: New York State Research&Development Authority - NYSERDA agreement number 102192 We are successfully commissioning a unique Cornell University and Brookhaven National Laboratory Electron Recovery Linac (ERL) Test Accelerator ’CBETA’ [1]. The ERL has four accelerating passes through the supercon-ducting linac with a single Fixed Field Alternating Linear Gradient (FFA-LG) return beam line built of the Halbach type permanent magnets. CBETA ERL accelerates elec-trons from 42 MeV to 150 MeV, with the 6 MeV injec-tor. The novelties are that four electron beams, with ener-gies of 42, 78, 114, and 150 MeV, are merged by spreader beam lines into a single arc FFA-LG beam line. The elec-tron beams from the Main Linac Cryomodule (MLC) pass through the FFA-LG arc and are adiabatically merged into a single straight line. From the straight section the beams are brought back to the MLC the same way. This is the first 4 pass superconducting ERL and the first single permanent magnet return line. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW102 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPRB078 | RF Commissioning and Performance in the CBETA ERL | 3003 |
|
||
Funding: This work was supported by the New York State Energy Research and Development Authority, Contract No. DE-SC0012704 with the U.S. Department of Energy and NSF award DMR-0807731. The Cornell-BNL ERL Test Accelerator (CBETA) is a new multi-turn energy recovery linac currently being commissioned at Cornell University. It uses a superconducting main linac to accelerate electrons by 36 MeV and recover their energy. The energy recovery process is sensitive to fluctuations in the accelerating field of all cavities. In this paper, we outline our semi-automated RF commissioning procedure, which starts from automatic coarse tuning of the cavity all the way to adjusting the field control loops. We show some results of using these tools and describe the recent performance of the RF system during our ongoing commissioning phase. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB078 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |