Paper | Title | Page |
---|---|---|
MOPGW017 | Feedback Design for Control of the Micro-Bunching Instability based on Reinforcement Learning | 104 |
|
||
The operation of ring-based synchrotron light sources with short electron bunches increases the emission of coherent synchrotron radiation (CSR) in the THz frequency range. However, the micro-bunching instability resulting from self-interaction of the bunch with its own radiation field limits stable operation with constant intensity of CSR emission to a particular threshold current. Above this threshold, the longitudinal charge distribution and thus the emitted radiation vary rapidly and continuously. Therefore, a fast and adaptive feedback system is the appropriate approach to stabilize the dynamics and to overcome the limitations given by the instability. In this contribution, we discuss first efforts towards a longitudinal feedback design that acts on the RF system of the KIT storage ring KARA (Karlsruhe Research Accelerator) and aims for stabilization of the emitted THz radiation. Our approach is based on methods of adaptive control that were developed in the field of reinforcement learning and have seen great success in other fields of research over the past decade. We motivate this particular approach and comment on different aspects of its implementation. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW017 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPGW018 | Perturbation of Synchrotron Motion in the Micro-Bunching Instability | 108 |
|
||
Short electron bunches in a storage ring are subject to complex longitudinal dynamics due to self-interaction with their own CSR. Above a particular threshold current, this leads to the formation of dynamically changing micro-structures within the bunch, generally known as the micro-bunching instability. The longitudinal dynamics of this phenomenon can be simulated by solving the Vlasov-Fokker-Planck equation, where the CSR self-interaction can be added as a perturbation to the Hamiltonian. This contribution particularly focuses on the comprehension of synchrotron motion in the micro-bunching instability and how it relates to the formation of the occurring micro-structures. Therefore, we adopt the perspective of a single particle and comment on its implications for collective motion. We explicitly show how the shape of the parallel plates CSR wake potential breaks homogeneity in longitudinal phase space and propose a quadrupole-like mode as potential seeding mechanism of the micro-bunching instability. The gained insights are verified using the passive particle tracking method of the Vlasov-Fokker-Planck solver Inovesa. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW018 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPTS017 | Status of Operation With Negative Momentum Compaction at KARA | 878 |
|
||
Funding: We are supported by the DFG-funded ’Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology’ and European Union’s Horizon 2020 research and innovation programme (No 730871) For future synchrotron light source development novel operation modes are under investigation. At the Karlsruhe Research Accelerator (KARA) an optics with negative momentum compaction has been proposed, which is currently under commissioning. In this context, the collective effects expected in this regime are studied with an initial focus on the head-tail instability and the micro-bunching instability resulting from CSR self-interaction. In this contribution, we will present the proposed optics and the status of implementation for operation in the negative momentum compaction regime as well as a preliminary discussion of expected collective effects. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS017 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPTS018 | First Electron Beam at the Linear Accelerator FLUTE at KIT | 882 |
|
||
Funding: The SRR project has received funding from the European Union’s Horizon 2020 Research and Innovation program under Grant Agreement No 730871. The first electron beams were generated in the 7 MeV section of the short-pulse linear accelerator test facility FLUTE (Ferninfrarot Linac- Und Test-Experiment) at the Karlsruhe Institute of Technology (KIT). In this contribution we show images of the electron beam on a YAG-screen (yttrium aluminum garnet) as well as signals from an integrating current transformer (ICT) and a Faraday cup. Furthermore, the progress of tuning the FLUTE electron bunches for experiments is presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS018 | |
About • | paper received ※ 10 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW020 | Non-Linear Features of the cSTART Project | 1437 |
|
||
The compact storage ring for accelerator research and technology (cSTART) is being designed and will be realized at the Institute for Beam Physics and Technology (IBPT) of the Karlsruhe Institute of Technology (KIT). One important goal of the project is to demonstrate injection and storage of a laser wakefield accelerator (LWFA) beam in a storage ring. As a first stage the compact linear accelerator FLUTE will serve as an injector of 50 MeV bunches to test the ring’s performance. A highly non-linear lattice of DBA-FDF type was studied extensively. The specific features of ring optics are reported. A special transfer line from FLUTE to cSTART including bunch compressor and non-linear elements is presented that maintains the ultra-short bunch length of FLUTE. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW020 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW010 | Diagnostics and First Beam Measurements at FLUTE | 2484 |
|
||
FLUTE (Ferninfrarot Linac- Und Test-Experiment) is a compact versatile linear accelerator at the Karlsruhe Institute of Technology (KIT). It serves as a platform for a variety of accelerator studies as well as a source of strong ultra-short THz pulses for photon science. In the commissioning phase of the 7 MeV low energy section the electron bunches are used to test the different diagnostics systems installed in this section. An example is the split-ring-resonator-experiment. In this contribution we report on the commissioning status of the beam diagnostics and present first beam measurements at FLUTE. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW010 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |