Author: Gilardoni, S.S.
Paper Title Page
MOPTS107 Beam Manipulations With Barrier Buckets in the CERN PS 1132
SUSPFO120   use link to see paper's listing under its alternate paper code  
 
  • M. Vadai, A. Alomainy
    QMUL, London, United Kingdom
  • H. Damerau, S.S. Gilardoni, M. Giovannozzi, A. Huschauer
    CERN, Geneva, Switzerland
 
  A barrier bucket scheme is being considered to reduce losses during the Multi-Turn Extraction from the CERN Proton Synchrotron to the Super Proton Synchrotron for the fixed-target physics programme. For effective loss reduction, the extraction kicker has to be triggered during the gap at the time of the longitudinal barrier. Initial beam studies at injection energy and with low intensity beams allowed to fully qualify an existing wide-band cavity to generate one or multiple beam synchronous pulses per turn. Bunch-length stretching and shortening have been exercised with barriers moving in azimuth with respect to the beam. The encouraging results obtained at injection energy guided the implementation of a de-bunching manipulation at higher energy to move all bunches into a single barrier bucket. Beam measurements at a momentum of 14GeV/c, varying intensity and the width of the barrier, demonstrate that a quasi-constant longitudinal line density and an almost fully depleted gap can be achieved at highest intensities. The contribution summarises the results of the beam studies at high energy together with some observations related to the Multi-Turn Extraction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS107  
About • paper received ※ 18 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP028 Crystal for Slow Extraction Loss-Reduction of the SPS Electrostatic Septum 2379
 
  • L.S. Esposito, P. Bestman, M.E.J. Butcher, M. Calviani, M. Di Castro, M. Donzé, M.A. Fraser, M. Garattini, Y. Gavrikov, S.S. Gilardoni, B. Goddard, V. Kain, J. Lendaro, A. Masi, M. Pari, J. Prieto, R. Rossi, W. Scandale, R. Seidenbinder, P. Serrano Galvez, L.S. Stoel, F.M. Velotti, V. Zhovkovska
    CERN, Meyrin, Switzerland
  • F.M. Addesa, F. Iacoangeli
    INFN-Roma, Roma, Italy
  • A.G. Afonin, Y.A. Chesnokov, A.A. Durum, V.A. Maisheev, Yu.E. Sandomirskiy, A.A. Yanovich
    IHEP, Moscow Region, Russia
  • J.E. Borg, M. Garattini, G. Hall, T. James, M. Pesaresi
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A.S. Denisov, Y. Gavrikov, Yu.M. Ivanov, M.A. Koznov, L.G. Malyarenko, V. Skorobogatov
    PNPI, Gatchina, Leningrad District, Russia
  • F. Galluccio
    INFN-Napoli, Napoli, Italy
  • A.D. Kovalenko, A.M. Taratin
    JINR, Dubna, Moscow Region, Russia
  • F. Murtas
    INFN/LNF, Frascati, Italy
  • A. Natochii
    LAL, Orsay, France
 
  The use of a bent crystal was investigated in order to reduce the losses at the CERN Super Proton Synchrotron (SPS) electrostatic septa (ZS) during the slow extraction of 400 GeV protons toward the North Area. The crystal, installed a few meters upstream the ZS, bends protons that would otherwise impinge on the ZS wires. Since particle deflection with good efficiency is achieved only when the crystal lattice is aligned within ~10 urad to the trajectory of the particles (at p = 400 GeV/c), a compact goniometer was built to allow the correct angular alignment of the crystal with respect to the incoming beam with a precision of few urad. In this paper, we report on the crystal features measured during a dedicated beam test by the UA9 experimental installation in the CERN H8 beam line. Details of the goniometer and its installation are also reported. The first results achieved during dedicated Machine Development (MD) sessions are finally presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP028  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP040 Machine Protection Aspects of High-Voltage Flashovers of the LHC Beam Dump Dilution Kickers 2418
 
  • C. Wiesner, W. Bartmann, C. Bracco, M. Calviani, E. Carlier, L. Ducimetière, M.I. Frankl, M.A. Fraser, S.S. Gilardoni, B. Goddard, V. Gomes Namora, T. Kramer, A. Lechner, N. Magnin, M. Meddahi, A. Perillo-Marcone, T. Polzin, L.C. Richtmann, V. Rizzoglio, V. Senaj, J.A.F. Somoza, D. Wollmann
    CERN, Meyrin, Switzerland
 
  The LHC Beam Dump System is required to safely dispose of the energy of the stored beam. In order to reduce the energy density deposited in the beam dump, a dedicated dilution system is installed. On July 14, 2018, during a regular beam dump at 6.5 TeV beam energy, a high-voltage flashover of two vertical dilution kickers was observed, leading to a voltage breakdown and reduced dilution in the vertical plane. It was the first incident of this type since the start of LHC beam operation. In this paper, the flashover event is described and the implications analysed. Circuit simulations of the current in the magnet coil as well as simulations of the resulting beam sweep pattern are presented and compared with the measurements. The criticality of the event is assessed and implications for future failure scenarios are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP040  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXXPLM2 Demonstration of Loss Reduction Using a Thin Bent Crystal to Shadow an Electrostatic Septum During Resonant Slow Extraction 3399
 
  • F.M. Velotti, P. Bestmann, M.E.J. Butcher, M. Calviani, M. Di Castro, M. Donzé, L.S. Esposito, M.A. Fraser, M. Garattini, S.S. Gilardoni, B. Goddard, V. Kain, J. Lendaro, A. Masi, D. Mirarchi, M. Pari, J. Prieto, S. Redaelli, R. Rossi, W. Scandale, R. Seidenbinder, P. Serrano Galvez, L.S. Stoel, C. Zamantzas, V. Zhovkovska
    CERN, Meyrin, Switzerland
  • F.M. Addesa, F. Iacoangeli
    INFN-Roma, Roma, Italy
  • A.G. Afonin, Y.A. Chesnokov, A.A. Durum, V.A. Maisheev, Yu.E. Sandomirskiy, A.A. Yanovich
    IHEP, Moscow Region, Russia
  • J.E. Borg, M. Garattini, G. Hall, T. James, M. Pesaresi
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A.S. Denisov, Y. Gavrikov, Yu.M. Ivanov, M.A. Koznov, L.G. Malyarenko, V. Skorobogatov
    PNPI, Gatchina, Leningrad District, Russia
  • F. Galluccio
    INFN-Napoli, Napoli, Italy
  • F. Murtas
    INFN/LNF, Frascati, Italy
 
  A proof-of-principle experiment demonstrating the feasibility of using a thin, bent crystal aligned upstream of an extraction septum (ES) to increase the efficiency of the third-integer resonant slow extraction process has been carried out at the CERN Super Proton Synchrotron (SPS). With the primary aim of reducing the beam loss and induced radio-activation of the SPS, the crystal was aligned to both the beam and the septum to reduce by up to 40% the beam intensity impinging the ES and increase the intensity entering the external transfer line. In this contribution, we introduce the concept and the prototype system that was installed in 2018 before reporting in detail on the dedicated program of machine development studies carried out to characterise its performance and demonstrate operational feasibility. The performance reach and compatibility with other loss reduction techniques proposed to further increase the extraction efficiency, such as phase space folding with octupoles, is discussed in view of future high intensity operation.  
slides icon Slides THXXPLM2 [1.397 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THXXPLM2  
About • paper received ※ 15 May 2019       paper accepted ※ 28 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)