Paper | Title | Page |
---|---|---|
TUPRB032 | The CompactLight Design Study Project | 1756 |
|
||
Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431 The H2020 CompactLight Project (www. CompactLight.eu) aims at designing the next generation of compact X-rays Free-Electron Lasers, relying on very high gradient accelerating structures (X-band, 12 GHz), the most advanced concepts for bright electron photo injectors, and innovative compact short-period undulators. Compared to existing facilities, the proposed facility will benefit from a lower electron beam energy, due to the enhanced undulators performance, and will be significantly more compact, with a smaller footprint, as a consequence of the lower energy and the high-gradient X-band structures. In addition, the whole infrastructure will also have a lower electrical power demand as well as lower construction and running costs. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB032 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTS024 | Design of a Full C-Band Injector for Ultra-High Brightness Electron Beam | 1979 |
|
||
High gradient rf photo-injectors have been a key development to enable several applications of high quality electron beams. They allow the generation of beams with very high peak current and low transverse emittance, satisfying the tight demands for free-electron lasers, energy recovery linacs, Compton/Thomson sources and high-energy linear colliders. In the paper we present the design of a new full C-band RF photo-injector recently developed in the framework of the XLS-Compact Light design study and of the EuPRAXIA@SPARC_LAB proposal. It allows to reach extremely good beam performances in terms of beam emittance (at the level of few hundreds nm), energy spread and peak current. The photo-injector is based on a very high gradient (>200 MV/m) ultra-fast (RF pulses <200 ns) C-band RF gun, followed by two C band TW structures. Different types of couplers for the 1.6 cell RF gun have been considered and also a new compact low pulsed heating coupler working on the TM020 mode on the full cell has been proposed. In the paper we report the design criteria of the gun, the powering system, and the results of the beam dynamics simulations. We also discuss the case of 1 kHz repetition rate. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS024 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEZPLM1 | The LATINO Project - An Italian Perspective on Connecting SMEs with Research Infrastructures | 2277 |
|
||
Funding: The LATINO project is co-funded by the Regione Lazio within POR-FESR 2014-2020 European activities (public call ’Open Research Infrastructures’). The National Laboratories of Frascati (LNF) are the first Italian research facility for the study of nuclear and subnuclear physics with accelerators and are the largest laboratories of the Italian National Institute for Nuclear Physics (INFN), the public body whose mission is theoretical, experimental and technological research in subnuclear, nuclear and astroparticle physics. LNF have an extensive experience in designing, installation, testing and operation of particle accelerators and the related technologies. The competences range over almost all the technologies related to particle accelerators, including radio frequency, vacuum, magnets and mechanics. LNF have always had a close relationship with the regional and national industries, stimulating the development and growth of the industrial background by means of close collaboration with partners. The LATINO (a Laboratory in Advanced Technologies for INnOvation) project is an initiative that fits into this path and aims to strengthen this relationship, allowing access to the technologies, instruments and competences not otherwise available to the enterprises. A modern vision of advanced economies recommends the Technology Transfer from the research world to the productive activities through the creation of research infrastructures as the most efficient system for generating innovation and economic development [1-3]. The Regione Lazio, despite hosting centres of excellence, has a delay in the establishment of this kind of infrastructures. |
||
![]() |
Slides WEZPLM1 [4.103 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEZPLM1 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMP009 | LATINO: A Laboratory in Advanced Technologies for Innovation | 3466 |
|
||
Funding: The LATINO project is co-funded by the Regione Lazio within POR-FESR 2014-2020 European activities (public call ’Open Research Infrastructures’). LATINO (a Laboratory in Advanced Technologies for INnOvation) is an open Research Infrastructure that will be hosted at the Frascati National Laboratories (LNF) of the Italian National Institute for Nuclear Physics (INFN). LATINO will allow the scientific community and the SMEs to get access to the technologies and competences developed for particle accelerators. The Infrastructure will be organized in four Laboratories: Radio Frequency, Vacuum and Thermal Treatments, Magnetic Measurements, Mechanical Integration. The list of the available instruments will include, besides others, a high power X-Band station to test cavities up to 50 Hz repetition rate and 200 MW input power, a network analyser to characterize microwave devices up to 100 GHz, a ultra high vacuum oven for thermal treatments and brazing, an outgassing measurement system to characterize vacuum materials, a stretched wire bench and a rotating coil for the magnetic field measurements of multipoles, environment and laser scanners. The regional and national industrial background comprises a remarkable number of highly qualified small and medium enterprises that could take advantage of the technologies offered by LATINO infrastructure to develop novel products within the Key Enabling Technologies and to get the access to new market segments. The Infrastructure will be fully operational at the beginning of 2020. For further information please visit www.latino.lnf.infn.it. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP009 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW026 | Status of the Horizon 2020 EuPRAXIA Conceptual Design Study | 3638 |
|
||
Funding: This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No. 653782. The Horizon 2020 Project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to FEL pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for HEP detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW026 | |
About • | paper received ※ 26 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |