Paper | Title | Page |
---|---|---|
MOPTS025 | Overview of the ARES Bunch Compressor at SINBAD | 902 |
|
||
Funding: This project has received funding from the European Unions Horizon 2020 Research and Innovation programme under Grant Agreement No 730871. Bunch compressors are essential for the generation of short bunches with applications in e.g. colliders, free electron lasers, and advanced accelerator concepts. The up-and-coming ARES accelerator located at SINBAD, DESY will support the formation of ~100~MeV, pC, sub-fs electron bunches for LWFA research and development. We give an overview on the ARES bunch compressor, providing start-to-end simulations of the machine and an update on its technical design. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS025 | |
About • | paper received ※ 17 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPTS026 | Status Report of the SINBAD-ARES RF Photoinjector and LINAC Commissioning | 906 |
|
||
The accelerator R&D facility SINBAD (Short innovative bunches and accelerators at DESY) will drive multiple independent experiments including the acceleration of ultrashort electron bunches and the test of advanced high gradient acceleration concepts. The SINBAD-ARES (Accelerator Research Experiment at SINBAD) setup hosts a normal conducting RF photoinjector generating a low charge electron beam that is afterwards accelerated to 100 MeV by an S-band linac section. The linac as well as a magnetic chicane allow the production of ultrashort pulses with an excellent arrival-time stability. The high brightness beam has then the potential to serve as a test beam for next generation compact acceleration schemes. The setup of the SINBAD-ARES facility will proceed in stages. We report on the current status of the ARES RF gun and linac commissioning. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS026 | |
About • | paper received ※ 22 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTS013 | Characterization of an Electron Gun Test Setup Based on Multipacting | 1961 |
|
||
A multipacting electron gun (MEG) is a micro-pulse electron source, based on secondary electron emission in a resonant microwave cavity structure, for the generation of low emittance electron bunches in continuous wave operation. Based on numerical simulations, an experimental test setup for low-energy electron beams at 3 GHz has been established. In this contribution we show a detailed description and characterization of the RF test stand, supported by first results on charge collection measurements of the output current with respect to important operational parameters like power transmission and modifiable mechanical dimensions in the assembly of the experiment. This is a milestone in the development of a MEG setup for higher energetic electron beams and subsequent investigation of essential beam characteristics like emittance and energy distribution for the optimization with regard to best possible beam quality and future fields of application. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS013 | |
About • | paper received ※ 30 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |