Author: Findlay, A.
Paper Title Page
MOPTS085 Commissioning of a New Digital Transverse Damper System at the PSB 1050
 
  • G.P. Di Giovanni, F. Antoniou, A. Blas, Y. Brischetto, A. Findlay, G. Kotzian, B. Mikulec, G. Sterbini
    CERN, Geneva, Switzerland
 
  At the CERN Proton Synchrotron Booster, PSB, an analog transverse damper system has been in operation since 1999, providing satisfactory operational results with the proton beam supplied by Linac2. As a consequence of the LHC Injectors Upgrade, the PSB will face new challenges imposed by higher intensity, injection and extraction energy. In this framework, the transverse feedback system is subject to an upgrade to adapt to the expected Linac4 beam and to the demands for new features including transverse blow-up, beam excitation for optics measurements and new remote control and monitoring capabilities. The replacement of the aging electronic hardware is also recommended to improve the system maintainability for future years. During 2018 a new digital transverse feedback electronics was installed in the PSB, in parallel with the current operational one, offering for the first time the occasion to demonstrate its performance with beam. Encouraging results were obtained such as the suppression of beam instabilities at all PSB energies and intensities. In this paper we describe the steps undertaken in 2018 in order to commission the system with the main goal to accelerate and extract the highest intensity beams produced at the PSB.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS085  
About • paper received ※ 06 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB068 Upgrade of CERN’s PSB Digital Low-Level RF System 3958
 
  • M.E. Angoletta, S.C.P. Albright, A. Findlay, M. Jaussi, J.C. Molendijk, N. Pittet
    CERN, Meyrin, Switzerland
 
  The CERN PS Booster (PSB) is the first circular accelerator in the LHC proton injector chain. The upgrade of this four-ring machine is underway within the framework of the LHC Injectors Upgrade project. The existing digital Low-Level RF (LLRF) system will also be upgraded. This paper outlines the LLRF capabilities required, their implementation and the challenges involved. Results of tests carried out to prepare for the LLRF upgrade are given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB068  
About • paper received ※ 13 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB070 A New Digital Low-Level RF and Longitudinal Diagnostic System for CERN’s AD 3966
 
  • M.E. Angoletta, S.C.P. Albright, A. Findlay, M. Jaussi, J.C. Molendijk, V.R. Myklebust
    CERN, Meyrin, Switzerland
 
  The Antiproton Decelerator (AD) has been routinely providing 3 E7 antiprotons since July 2000 at 100 MeV/c from 3.5 GeV/c. It will be refurbished during the Long Shutdown 2 (LS2) to provide reliable operation for the new Extra Low ENergy Antiproton (ELENA) ring. AD will be equipped with a new digital Low-Level RF (LLRF) system before its restart in 2021. Diagnostics to measure beam intensity, Δp/p and Schottky spectra will also be developed. This paper is an overview of the planned capabilities and implementations, as well as of the challenges to overcome.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB070  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)