Author: Dzitko, H.
Paper Title Page
MOPTS047 Radiation Measurement in the 1st Beam Commissioning Campaign of the LIPAc RFQ 964
 
  • K. Kondo, S. Kwon, K. Sakamoto, T. Shinya, M. Sugimoto
    QST, Aomori, Japan
  • L. Bellan, F. Grespan, F. Scantamburlo
    INFN/LNL, Legnaro (PD), Italy
  • P. Cara
    IFMIF/EVEDA, Rokkasho, Japan
  • H. Dzitko
    F4E, Germany
  • R. Heidinger
    Fusion for Energy, Garching, Germany
  • I. Podadera
    CIEMAT, Madrid, Spain
 
  The 1st proton beam acceleration of the Linear IFMIF Prototype Accelerator (LIPAc) through its novel RFQ was succeeded on 13th June 2018. Addition to plenty of beam diagnostics equipped in the beam line, we prepared some radiation detectors placed around the accelerator in order to acquire supplemental information of the beam, as an indirect measurement. In the first day of the beam injec-tion to the RFQ, the gamma-rays corresponding to certain excited states of Al of the low power beam dump were successfully detected by a LaBr3(Ce) scintillation detec-tor. Some neutrons, which would originate from the inter-action of protons with Cu somewhere, were also ob-served. These results proved that the beam was certainly accelerated up to about 2.5 MeV, and provided us a defin-itive confidence that the RFQ was working appropriately from the very beginning of the commissioning. Also, the comparison of the radiation yields with the RFQ trans-mission provided additional information on the beam energy distribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS047  
About • paper received ※ 23 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS051 Lattice Design for 5MeV-125mA CW RFQ Operation in the LIPAc 977
 
  • Y. Shimosaki, A. Kasugai, K. Kondo, K. Sakamoto, M. Sugimoto
    QST, Aomori, Japan
  • L. Bellan, M. Comunian, E. Fagotti, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • B. Brañas Lasala, C. Oliver, I. Podadera
    CIEMAT, Madrid, Spain
  • P. Cara
    IFMIF/EVEDA, Rokkasho, Japan
  • N. Chauvin
    CEA-IRFU, Gif-sur-Yvette, France
  • G. Duglue, H. Dzitko
    F4E, Germany
  • R. Heidinger
    Fusion for Energy, Garching, Germany
  • H. Kobayashi, K. Takayama
    KEK, Ibaraki, Japan
 
  The installation and commissioning of the LIPAc are ongoing under the Broader Approach agreement, which is the prototype accelerator of the IFMIF for proof of princi-ple and design. The deuteron beam will be accelerated by the RFQ linac from 100 keV to 5 MeV during the com-missioning phase-B and by the SRF linac up to 9 MeV during the phase-C. The commissioning phase-B+ will be implemented between phase-B and C to complete the engineering validation of the RFQ linac before installing the SRF linac. The lattice for the deuteron beam of 5 MeV and 125 mA at the commissioning phase-B+ was designed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS051  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)