Paper | Title | Page |
---|---|---|
MOPRB052 | Gamma Factory at CERN: Design of a Proof-of-Principle Experiment | 685 |
|
||
The Gamma Factory (GF) initiative proposes to create novel research tools at CERN by producing, accelerating and storing highly relativistic partially stripped ion beams in the LHC rings and by exciting their atomic degrees of freedom by lasers, to produce high-energy photon beams. Their intensity would be several orders of magnitude higher than those of the presently operating light sources in the particularly interesting gamma-ray energy domain reaching up to 400 MeV. In this energy domain, the high-intensity photon beams can be used to produce secondary beams of polarized electrons, polarized positrons, polarized muons, neutrinos, neutrons and radioactive ions. Over the years 2017-2018 we have demonstrated that these partially stripped ion beams can be successfully produced, accelerated and stored in the CERN accelerator complex, including the LHC. The next step of the project is to build a proof of principle experiment in the SPS to validate the principal GF concepts. This contribution will present the initial conceptual design of this experiment along with its main challenge - the demonstration of the fast cooling method of partially stripped ion beams. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB052 | |
About • | paper received ※ 19 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPTS098 | A Primary Electron Beam Facility at CERN | 1098 |
|
||
This paper describes the concept of a primary electron beam facility at CERN, to be used for dark gauge force and light dark matter searches. The electron beam is produced in three stages: A Linac accelerates electrons from a photo-cathode up to 3.5 GeV. This beam is injected into the Super Proton Synchrotron, SPS, and accelerated up to a maximum energy of 16 GeV. Finally, the accelerated beam is slowly extracted to an experiment, possibly followed by a fast dump of the remaining electrons to another beamline. The beam parameters are optimized using the requirements of the Light Dark Matter eXperiment, LDMX, as benchmark. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS098 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMP025 | Matching Studies Between CERN PSB and PS Through Multi-Turn Beam Profile Acquisitions | 2367 |
|
||
In the framework of the LHC Injectors Upgrade (LIU) project, the investigation and quantification of the optics mismatch between the CERN Proton Synchrotron Booster (PSB) and PS is a crucial step in understanding the source of horizontal emittance growth between the two machines. Extensive studies were carried out to estimate the mismatch from single-pass measurements in the transfer line and to rematch the transfer line to reduce the dispersive mismatch at PS injection while keeping the betatron matching unaltered. This paper presents the results of the data analysis of more recent multi-turn measurements, which profited from a new turn-by-turn beam profile monitor in the PS ring, to assess the achieved level of matching and corresponding emittance growth. The results confirm the improved matching and demonstrate the feasibility of the multi-turn technique as a fundamental tool that will be important for the recommissioning of the renovated transfer line after Long Shutdown 2. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP025 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMP026 | Emittance Dilution from the CERN Proton Synchrotron Booster’s Extraction Kickers | 2371 |
|
||
Understanding the different sources of emittance dilution along the LHC injector chain is an important part of providing the high brightness proton beams demanded by the LHC Injectors Upgrade (LIU) project. In this context, the first beam-based measurements of the magnetic waveforms of the Proton Synchrotron Booster’s (PSB) extraction kickers were carried out and used to quantify the transverse emittance blow-up during extraction and transfer to the Proton Synchrotron (PS). In this contribution, the waveform measurement technique will be briefly outlined before the results and their implications for the LIU project and beam performance reach are discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP026 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMP027 | Update on Beam Transfer Line Design for the SPS Beam Dump Facility | 2375 |
|
||
The SPS Beam Dump Facility (BDF) being studied as part of the Physics Beyond Colliders (PBC) CERN project has recently reached an important milestone with the completion of the comprehensive feasibility study. The BDF is a proposed fixed target facility to be installed in the SPS North Area, to accommodate experiments such as SHiP (Search for Hidden Particles), which is most notably aiming at studying hidden sector particles. This experiment requires a high intensity slowly extracted 400 GeV proton beam with 4·1013 protons per 1 s spill to achieve 4·1019 protons on target per year. The extraction and transport scheme will make use of the first 600 m of the existing North Area extraction line. This contribution presents the status of the design work of the new transfer line and discusses the challenges identified. Aperture studies and failure scenarios are treated and the results discussed. In particular, interlock systems aiming at protecting critical components against the uncontrolled loss of the high energy proton beam are considered. We also present the latest results and implications of the design of a new laminated Lambertson splitter magnet to provide fast switching between the current North Area experiments and the BDF. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP027 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMP031 | SPS Slow Extraction Losses and Activation: Update on Recent Improvements | 2391 |
|
||
Annual high intensity requests of over 1019 protons on target (POT) from the CERN Super Proton Synchrotron (SPS) Fixed Target (FT) physics program continue, with the prospect of requests for even higher, unprecedented levels in the coming decade. A concerted and multifaceted R&D effort has been launched to understand and reduce the slow extraction induced radioactivation of the SPS and to anticipate future experimental proposals, such as SHiP* at the SPS Beam Dump Facility (BDF)**, which will request an additional 4·1019 POT per year. In this contribution, we report on operational improvements and recent advances that have been made to significantly reduce the slow extraction losses, by up to a factor of 3, with the deployment of new extraction concepts, including passive and active (thin, bent crystal) diffusers and extraction on the third-integer resonance with octupoles. In light of the successful tests of the prototype extraction loss reduction schemes, an outlook and implications for future SPS FT operation will be presented.
* A. Golutvin et al., Rep. CERN-SPSC-2015-016 (SPSC-P-350), CERN, Geneva, Switzerland, Apr. 2015. ** M. Lamont et al., Rep. CERN-PBC-REPORT-2018-001, CERN, Geneva, Switzerland, 11 Dec 2018. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP031 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |