Author: Duncan, C.J.R.
Paper Title Page
WEXXPLM3
Photocathodes Research Activities for High Brigtheness Beams, Spin Polarized Sources and Large Area Photon Detectors at Cornell University  
 
  • L. Cultrera, J. Bae, I.V. Bazarov, C.J.R. Duncan, A. Galdi, F. Ikponmwen, W.H. Li, J.M. Maxson, C.M. Pierce
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF award no. PHY-1549132, DOE awards no. DE-SC0011643 and DE-SC0019122
We will a give broad description of recent results from Cornell University on improving the state of the art in the production of high brightness photoemitted electron beams for future light sources and ultrafast electron scattering. We will also discuss recent results on improving the lifetime of photocathode for spin polarized electron beam and on the production of large area photocathodes for single photon detection applications
 
slides icon Slides WEXXPLM3 [7.384 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB099 Applications of Dimension-Reduction to Various Accelerator Physics Problems 4060
 
  • W.F. Bergan, I.V. Bazarov, C.J.R. Duncan, D.L. Rubin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: DE-SC 0013571 DGE-1650441 OIA-1549132
Particle accelerators contain hundreds of magnets, making dimension-reduction techniques attractive when attempting to tune them. We apply this procedure to two different problems: correcting the orbit in the Cornell synchrotron and maximizing the dynamic aperture in the Cornell Electron Storage Ring (CESR). Cornell’s rapid cycling synchrotron accepts a 200 MeV beam from the linac and accelerates it to 6 GeV for injection into the CESR. ‘Kicker coils’ (dipole correctors) are used to correct for residual fields which would otherwise cause beam loss at the low energies. In such cases, it is usually advisable to measure and correct the orbit. However, one cannot measure the orbit without first getting the beam to circulate a few hundred times, by which point the low-energy orbit would already be mostly corrected. In order to speed up the process of empirical orbit tuning, we form knobs which have the largest effect on the global orbit error, so that the dimensionality of the space which must be searched may be greatly reduced. A small dynamic aperture in CESR will have adverse effects on beam lifetime and injection efficiency, and so ought to be maximized by tuning sextupoles. However, it is often unclear which sextupoles one ought to tune to alleviate the problem. Moreover, once the chromaticity is properly adjusted, it should not be changed. Since we expect resonance driving terms (RDTs) to have a large impact on the dynamic aperture, we develop sextupole knobs which change the RDTs as much as possible while leaving the chromaticity fixed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB099  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB100 A Generic Software Platform for Rapid Prototyping of Online Control Algorithms 4063
SUSPFO123   use link to see paper's listing under its alternate paper code  
 
  • C.J.R. Duncan, M.B. Andorf, I.V. Bazarov, I.V. Bazarov, C.M. Gulliford, V. Khachatryan, J.M. Maxson, D.L. Rubin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • I.V. Bazarov
    Cornell University, Ithaca, New York, USA
 
  Funding: US Department of Energy DE-SC 0013571
Algorithmic control of accelerators is an active area of research that promises significant improvements in machine performance. To facilitate rapid algorithm prototyping, we have developed a generic interface between accelerator controls, beam physics modelling software and modern scripting languages. The work-flow of a project using this interface begins with testing algorithms of choice offline in simulation. After off-line testing, the same code can be deployed on real machines via the Experimental Physics and Industrial Control System (EPICS) API. We include noise in our simulations in order to mimic realistic accelerator behaviour and to evaluate robustness of algorithms to experimental uncertainties and long-term drifts. The results of test cases of using this framework are presented, including emittance tuning of the Cornell Electron Storage Ring (CESR), correction of diurnal drift in CESR steering and orbit correction on CESR and the Cornell-BNL ERL Test Accelerator (CBETA).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB100  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)