Paper | Title | Page |
---|---|---|
WEPMP040 | Machine Protection Aspects of High-Voltage Flashovers of the LHC Beam Dump Dilution Kickers | 2418 |
|
||
The LHC Beam Dump System is required to safely dispose of the energy of the stored beam. In order to reduce the energy density deposited in the beam dump, a dedicated dilution system is installed. On July 14, 2018, during a regular beam dump at 6.5 TeV beam energy, a high-voltage flashover of two vertical dilution kickers was observed, leading to a voltage breakdown and reduced dilution in the vertical plane. It was the first incident of this type since the start of LHC beam operation. In this paper, the flashover event is described and the implications analysed. Circuit simulations of the current in the magnet coil as well as simulations of the resulting beam sweep pattern are presented and compared with the measurements. The criticality of the event is assessed and implications for future failure scenarios are discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP040 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPRB072 | Operational Experience of a Prototype LHC Injection Kicker Magnet with a Low SEY Coating and Redistributed Power Deposition | 3974 |
|
||
Funding: This research was supported by the HL-LHC project In the event that it is necessary to exchange an LHC injection kicker magnet (MKI), the newly installed kicker magnet would limit HL-LHC operation for a few hundred hours due to dynamic vacuum activity. A surface coating with a low secondary electron yield, applied to the inner surface of an alumina tube to reduce dynamic vacuum activity without increasing the probability of UFOs, and which is compatible with the high voltage environment, was included in a prototype MKI installed in the LHC during the 2017-18 Year End Technical Stop. In addition, this MKI included an upgrade to relocate a significant portion of beam induced power from the yoke to a ’damping element’: this element is not at pulsed high voltage. The effectiveness of the upgrades has been demonstrated during LHC operation, hence a future version will include water cooling of this ’damping element’. This paper reviews dynamic vacuum around the MKIs and summarizes operational experience of the upgraded MKI. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB072 | |
About • | paper received ※ 08 April 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPRB074 | Studies Towards the New Beam Screen System of the LHC Injection Kicker Magnet for HL-LHC Operation | 3982 |
|
||
Although no heating issues were observed in the Large Hadron Collider’s (LHC) injection kicker magnets (MKIs) during Run 2, simulations suggest that for operation with the high intensity beams of the High Luminosity LHC (HL-LHC) project, the magnet’s ferrite yokes will reach their Curie temperature, thus leading to long turnaround times before a new beam can be safely injected into the machine. To safely enter the HL-LHC era, a campaign to redesign the kicker’s beam screen was launched. An improved beam-screen has already been implemented in an upgraded MKI, that was installed in the LHC tunnel in the Year End Technical Stop (YETS) 17/18, and has been successfully tested during 2018 operation. However, the improved design alone is not expected to be enough for HL-LHC operation, and further modifications are required. In this work, the approach to the design from an electromagnetic point of view is presented and different considered options are reported, emphasising the final design of the new beam screen system that is currently being implemented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB074 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPRB075 | Transverse Impedance Measurements and Simulations of the LHC Injection Kicker Magnet | 3986 |
|
||
Kicker magnets contribute significantly to the total impedance budget of many accelerators. Of particular interest, from a beam stability point of view, is the transverse beam coupling impedance (TBCI) that is used to determine intensity limitations of a machine. Until recently, no conclusive TBCI data for the Large Hadron Collider (LHC) injection kicker magnets (MKIs) was available. However, in view of the upgrade of the MKIs for the High-Luminosity LHC (HL-LHC) project, the TBCI of the existing design needed to be estimated to be used as reference for an upgraded version. To that end, electromagnetic simulations were carried out to determine the dipolar and quadrupolar components of the TBCI in the two transverse planes. To validate the simulations, test bench measurements were performed using standard RF measurement techniques. In the present work, the results from TBCI simulations and measurements are reported and compared. Detailed descriptions of the methods and techniques used as well as the realization of the experimental set-up are also given. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB075 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPRB079 | DC Testing and Phase Resolved Partial Discharge Measurements of the New Trigger Transformers for the LHC Beam Dump Kickers | 3998 |
|
||
During LS2 the LHC beam dump kicker pulse generators will be subject to a substantial consolidation program. One major part is the replacement of the existing GTO stack trigger transformer by a new more performant one. The transformer is assembled, moulded and tested in-house. Part of the validation procedure are standard DC tests and subsequent discharge monitoring as well as newly introduced phase resolved partial discharge measurements. This paper briefly highlights the trigger transformer parameters and construction and outlines in detail the testing and partial discharge measurements. It concludes with a comparison and analysis of the results of the different measurement techniques. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB079 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |