Paper | Title | Page |
---|---|---|
MOPMP012 | Concepts of Longitudinally Polarized Electron and Positron Colliding Beams in the Circular Electron Positron Collider | 445 |
|
||
Funding: Work supported by National Key Research and Development Program of China (No.2018YFA0404300). This paper reports some preliminary study into the imple- mentation of longitudinally polarized e+/e− colliding beams in the Circular Electron Positron Collider, at a center of mass energy of 91 GeV as a Z factory and energies beyond. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP012 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUZPLS2 | Beam Dynamics Study in the HEPS Storage Ring | 1203 |
|
||
The High Energy Photon Source (HEPS) is the first high-energy diffraction-limited storage ring (DLSR) light source to be built in China, with a natural emittance of a few tens of pm rad and a circumference of 1360.4 m. After 10 years’ evolution, the accelerator physics design of the HEPS has been basically determined, with the ring consisting of 48 hybrid-7BAs with anti-bends and super-bends. This paper will discuss the accelerator physics studies of the HEPS storage ring, covering issues of lattice design, nonlinear optimization, collective effects, error correction, insertion devices, etc. | ||
![]() |
Slides TUZPLS2 [9.517 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUZPLS2 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW046 | Progress of Lattice Design and Physics Studies on the High Energy Photon Source | 1510 |
|
||
The High Energy Photon Source (HEPS) is an ul-tralow-emittance, kilometer-scale storage ring light source to be built in China. In this paper we will introduce the progress of the physics design and related studies of HEPS over the past year, covering issues in storage ring lattice design, injection and injector design, insertion device effects, error study and lattice calibration, collective effects, etc. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW046 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW048 | Simulation of Injection Efficiency for the High Energy Photon Source | 1514 |
|
||
Funding: Work supported by Natural Science Foundation of China (No.11605212). A ’high-energy accumulation’ scheme [1] was proposed to deliver the full charge bunches for the swap-out injec- tion of the High Energy Photon Source. In this scheme, the depleted storage ring bunches are recovered via merging with small charge bunches in the booster, before being refilled into the storage ring. In particular, the high charge bunches are transferred twice between the storage ring and the booster, and thus it is essential to maintain a near per- fect transmission efficiency in the whole process. In this paper, major error effects affecting the transmission efficiency are analyzed and their tolerances are summarized, injection simulations indicate a satisfactory transmission efficiency is achievable for the present baseline lattice. * Z. Duan, et al., "The swap-out injection scheme for the High Energy Photon Source", Proc. IPAC’18, THPMF052 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW048 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW053 | Simulations of the Injection Transient Instabilities for the High Energy Photon Source | 1524 |
|
||
Funding: Work supported by Natural Science Foundation of China (No.11605212). A "charge recovery in booster" scheme* was proposed to deliver the full charge bunches for the swap-out injection of the High Energy Photon Source. In this scheme, the booster is employed also as a full energy accumulator ring to capture the high charge bunch extracted from the storage ring via merging with the small charge bunch accelerated in the booster, after enough damping in the booster for about 20 ms, the recovered full charge bunch is re-injected into the storage ring. This scheme avoids the challenges to accelerate a bunch charge of ~ 15 nC, and is cost effective compared to building a dedicated 6 GeV accumulator ring. However, there will be a period of time during injection that one bunch is missing in the storage ring, which inevitably introduces some injection transients. Since "transparency" to the user experiments is a desired feature of injection schemes for next generation diffraction-limited storage rings, the injection transient effects are simulated for the proposed injection scheme, and how it would affect the user experiments are carefully evaluated. * Z. Duan, et al., "The swap-out injection scheme for the High Energy Photon Source", Proc. IPAC’18, THPMF052 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW053 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMP018 | A Novel Non-Linear Strip-Line Kicker Driven by Fast Pulser in Common Mode | 2345 |
|
||
The next generation storage ring-based light sources adopt multi-bend achromat lattices to achieve a low emittance. The dynamic apertures of these machines are usually less than 10 mm so that the traditional pulsed local bump injection is difficult to achieve. Off-axis injection with a pulsed multipole or a non-linear kicker could be a viable solution which requires a moderate dynamic aperture of a few mm. In this paper, a novel non-linear kicker design is presented. Unlike pulsed sextupole or nonlinear kicker magnet, the nonlinear kicker we proposed is a traveling wave kicker with 2 strip-line electrodes driven by a nanosecond-level fast pulser in common mode. The disturbance to the stored beam is minimal since the perturbation is limited to the target bunch alone.
Work support by NSFC(11475200 and 11675194). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP018 | |
About • | paper received ※ 30 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |