Author: Du, Y.C.
Paper Title Page
TUPTS053 Design of a 217 MHz VHF Gun at Tsinghua University 2050
SUSPFO084   use link to see paper's listing under its alternate paper code  
 
  • L.M. Zheng, H. Chen, Y.C. Du, W.-H. Huang, R.K. Li, Z.Z. Li, C.-X. Tang
    TUB, Beijing, People’s Republic of China
  • B. Gao
    IHEP, Beijing, People’s Republic of China
 
  A 217 MHz VHF gun operating in CW mode is designing at Tsinghua University. The cathode gradient is designed to be 30 MV/m to accelerate the electron bunches up to 878 keV. The cavity profile is optimized in CST to minimize the input power, peak surface electric field, and peak wall power density. The multipacting analysis and the thermal analysis are also presented in this paper. Further gun shape optimization and mechanical design are ongoing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS053  
About • paper received ※ 15 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZZPLS1
Experimental Demonstration of External Injection From a Linac into a LWFA with ~100% Capture Efficiency  
 
  • J.F. Hua, Y.C. Du, Y. Fang, S. Liu, W. Lu, C.H. Pai, B. Peng, Y.P. Wu, J. Zhang, Z. Zhou
    TUB, Beijing, People’s Republic of China
 
  Staging of conventional accelerators and advanced plasma-based accelerators can boost the beam energy while at the same time better control the beam quality, therefore it is essential for high-energy applications such as TeV-level colliders. Here we present the first successful demonstration of external injection from a linear accelerator (LINAC) into a laser wakefield accelerator (LWFA) and the subsequent acceleration with ~100% capture efficiency. Stable 31MeV, 20fC electron beams from the LINAC were velocity bunched to the length of ~15fs (r.m.s.) in the high-gradient photocathode RF gun and then external injected into the linear wakefield excited by the 10TW, 42fs laser. The experimental results show that nearly all the electrons can be mono-energetically accelerated and the maximum energy gain reaches 1.8MeV in a 6-mm long plasma, corresponding to an average gradient of about 300MV/m. High capture efficiency of external injection has also been systematically validated by 3D PIC simulations. This paves the way toward the development of high-energy particle accelerators for future colliders.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS034 Generation of Sub-Femtosecond Electron Beams and Electron Bunch Trains With High Form Factor Using Wake Field Structures 3174
 
  • Z. Dong, H. Chen, X.J. Deng, Y.C. Du, Z. Zhou
    TUB, Beijing, People’s Republic of China
 
  In this paper, we propose two beam manipulation methods with wakefield structures in a photo-injector. First, we propose a simple scheme to compensate non-linear effects during ballistic bunching by using a wakefield structure. Simulations have shown beams of 1 pC charge can be compressed to 1.56 fs rms, and even shorter beams (a few hundred attoseconds) can be obtained with bunch charge well below 1 pC. In the second part, a method of producing bunch trains with high form factor is proposed by using multiple wake-field structures. Simulation results have shown the production of a train with a form factor of 0.5 using a 1 nC beam at few-MeV energy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS034  
About • paper received ※ 11 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)