Author: Ding, Y.
Paper Title Page
TUPRB088 Generation of High Peak Power Hard X-Rays at LCLS-II with Double Bunch Self-seeding 1863
 
  • A. Halavanau, F.-J. Decker, Y. Ding, C. Emma, Z. Huang, J. Krzywiński, A.A. Lutman, G. Marcus, C. Pellegrini, D. Zhu
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy Contract No. DE-AC02-76SF00515.
We propose to use existing LCLS copper S-band linac double bunch infrastructure to significantly improve LCLS-II hard X-ray performance. In our setup, we use the first bunch to generate a strong seeding X-ray signal, and the second bunch, initially traveling off-axis, to interact with the seed in the amplifier undulator and generate a near TW, 15 fs duration X-ray pulse in the 4 to 8 keV photon energy range. We investigate, via numerical simulations, the required transverse beam dynamics and the four crystals X-ray monochromator to be added to the existing LCLS-II beamline and discuss the final properties of the hard X-ray pulses and their potential application in high intensity, high-field physics experiments, including QED above the Schwinger critical field.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB088  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS106 First Commissioning of LCLS-II CW Injector Source 2171
 
  • F. Zhou, C. Adolphsen, A.L. Benwell, G.W. Brown, W.S. Colocho, Y. Ding, M.P. Dunning, K. Grouev, B.T. Jacobson, X. Liu, T.J. Maxwell, J.F. Schmerge, T.J. Smith, T. Vecchione, F.Y. Wang, C.M. Zimmer
    SLAC, Menlo Park, California, USA
  • G. Huang, F. Sannibale
    LBNL, Berkeley, California, USA
 
  Funding: The work is supported by DOE under grant No. DE-AC02-76SF00515
The LCLS-II injector source includes a 186MHz CW rf-gun, a 1.3 GHz CW rf-buncher, a loadlock system for photocathode change, two main solenoids, and a few essential diagnostics. The electron beam is designed to operate at a high repetition rate, up to 1-MHz. Since summer of 2018 we started LCLS-II injector source commissioning immediately after the major installation was completed. Initial commissioning showed the rf-gun was severely contaminated with hydrocarbons and very limited power <600W could be fed into the gun cavity. After a few significant processes, we eventually removed the hydrocarbons and successfully delivered desired rf power of 80 kW to the gun. This paper reports first com-missioning results including gun bakeout and vacuum processing, CW RF-gun and buncher operation with nom-inal power, and measurements of rf stability and dark current.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS106  
About • paper received ※ 10 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXPLM1 XFEL Operational Flexibility due to the Dechirper System 2219
 
  • A.A. Lutman, K.L.F. Bane, Y. Ding, C. Emma, M.W. Guetg, E. Hemsing, Z. Huang, J. Krzywiński, J.P. MacArthur, G. Marcus, A. Marinelli, T.J. Maxwell, A. Novokhatski
    SLAC, Menlo Park, California, USA
  • G. Guo
    Stanford University, Stanford, California, USA
 
  Funding: U.S.Department of Energy, Office of Science, Laboratory Directed Research and Development (LDRD) program at SLAC National Accelerator Laboratory, under Contract No. DE-AC02-76SF00515.
The RadiaBeam/SLAC dechirper was installed to demonstrate the concept of using wakefields from a corrugated structure to change the energy profile along an electron bunch. Since installation, the system has allowed a large number of additional XFEL operating modes including fresh-slice two-color or three color operation, fresh-slice seeding, passive streaking, etc. This talk will discuss the results from using the dechirper system and possible implementation issues related to the high-rate LCLS-II.
Lutman, A. A. et al. Nat. Photon. 10, 745-750 (2016).; Nat. Photon. 10, 695-696 (2016); other papers in submission.
 
slides icon Slides WEXPLM1 [5.744 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEXPLM1  
About • paper received ※ 10 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)