Author: Dexter, A.C.
Paper Title Page
THPRB097 Analysis of RF System Stability on CLARA 4053
 
  • N.Y. Joshi, J.K. Jones, A.J. Moss, E.W. Snedden, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.C. Dexter, J. Henderson
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • J.K. Jones
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The Compact Linear Accelerator for Research and Applications (CLARA) facility at STFC Daresbury Laboratory will test underpinning concepts and technology for a next generation X-ray free electron laser (FEL). CLARA will use four S-band normal conducting traveling wave linacs to accelerate electron bunches to a maximum energy of 250 MeV. The amplitude and phase stability of the collected RF systems is critical in enabling CLARA to achieve low (10 fs) shot-to-shot timing jitter of the photon output. Here we present initial measurements and model of the amplitude and phase jitter of the CLARA RF systems, achieved by experimentally correlating the klystron output with controls from modulator, driver, and other environment parameters. The effect of the RF jitter on the CLARA beam momentum is also integrated in the model.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB097  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)