Paper | Title | Page |
---|---|---|
WEPMP044 | Mu2e Electrostatic Septa Volumetric Exchange of Fc-40 Dielectric in High Radiation Environments | 2434 |
|
||
Funding: * Operated by FRA, LLC under Contract No. DEAC02-07CH11359 and Grant Award No. LAB 18-1802 with the United States Department of Energy. Two electrostatic septa (ESS) are being designed for the slow extraction of 8 GeV proton beam for the Mu2e experiment at Fermilab. Special attention is given to the high voltage feedthrough (HVF), which energizes the cathode creating the bending field. The FC-40 dielectric fluid, surrounding the HV cable breaks down from radiation exposure, which reduces its insulating capabilities. The new HVF design focuses on effective replacement of the exposed fluid and eliminating the stagnant areas of low exchange rate. A preliminary test using a fully transparent prototype HVF and water was conducted to understand the volumetric exchange rate of the high radiation region. Here we discuss the results of these tests and further studies using the FC-40. ** malvare4@fnal.gov *** vnagasl@fnal.gov |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP044 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPRB108 | LBNF Hadron Absorber: Updated Mechanical Design and Analysis for 2.4 MW Operation | 4078 |
|
||
The Long-Baseline Neutrino Facility (LBNF) Hadron Absorber is located downstream of the decay pipe. It consists of actively cooled aluminum and steel blocks surrounded by steel and concrete shielding. Majority of the beam power is deposited in the absorber core which is water cooled. The surrounding steel and concrete shielding are air-cooled. The absorber provides radiation protection to personnel and keeps soil and ground activation levels to below allowable limits. It is designed for 2.4 MW beam operations. The total heat load deposited into the absorber is approximately 400 kW. The current design considers the longer 4-interaction length target of the optimized beam design. In addition, the ‘bafflette’ around the target reduces the energy deposited into the absorber. For this reason, the sculpting in the aluminum core blocks, which was in the previous design, was removed, making the design uniform and less complicated. In addition, the uniformity of the absorber makes it easier to understand the muon monitor data. Steady state thermal, structural, and Computational Fluid Dynamics (CFD) analysis of critical absorber aluminum and steel components during steady state operations is discussed herein. A similar analysis for a 120 GeV, 10 µs pulse, accident condition is also discussed. A preliminary design for the accident pulse prevention system that protects the absorber is also described. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB108 | |
About • | paper received ※ 30 April 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |